Eingabe löschen

Kopfbereich

Schnellnavigation

Hauptnavigation

CAS Smart Service Engineering (Data Product Design)

Folgende Fragestellungen stehen im Zentrum des CAS Smart Service Engineering:

  • Wie entwickelt man auf der Basis von Daten neue Services, Produkte sowie Produkt-Service-Systeme mit einem Mehrwert für die Anwender und Kunden?
  • Wie findet man die relevante, Anwender-spezifische Value Proposition für ein Data Product?
  • Wie entwickelt man ein gewinnbringendes Geschäftsmodell für ein Data Product?
  • Welche Aspekte des Datenschutzes und des Rechts sind dabei zu berücksichtigen?

Das CAS Smart Service Engineering ist Bestandteil des DAS Data Science, des MAS Data Science sowie des MAS Industrie 4.0.

Auf einen Blick

Abschluss: Certificate of Advanced Studies in Smart Service Engineering (12 ECTS)

Start: 26.02.2021

Dauer: 5 Monate

Kosten: CHF 5'900.00

Durchführungsort: 

ZHAW Technopark - Trakt A (LT) - Technoparkstrasse 2 - 8406 Winterthur

Unterrichtssprache: Deutsch

Ziele und Inhalt

Zielpublikum

Mit dem CAS Smart Service Engineering sollen Professionals mit Hochschulabschluss und mehrjähriger Berufserfahrung als

  • Daten- oder Business-Analysten sowie Analytiker und Data Miner
  • Spezialisten für die Innovation von Produkten und Services
  • Spezialisten im analytischen Marketing
  • Ingenieure, Softwareentwickler
  • Produktentwickler
  • IT Projektleiter und Berater
  • Marketingfachleute mit Interesse an der Nutzung von Daten für ihre Produkte

angesprochen werden.

Ziele

Die Studierenden erwerben sowohl theoretische Grundlagen als auch praktische Fähigkeiten in den folgenden Bereichen:

  • Service Design mit datenspezifischen Aspekten
  • Business Model Design mit datenspezifischen Aspekten
  • Praktische Umsetzungsfähigkeiten, Rapid Prototyping, User Testing
  • Aspekte des Datenschutzes und der Datensicherheit beim Data Product Design

Inhalt

Modul A "Smart Service und Data Product Design"

Leitidee

Dieses Modul soll den Studierenden aufzeigen, wie Data Service Design die Erkenntnisse der Data Science aufgreift und damit Nutzen für Anwender erzeugt

Inhalte

  • Grundlagen von Smart Service Design (Customer insight, customer journey, value proposition design, Nutzung von Data Insights)
  • Ausgewählte Themen der Service Science und der Service Dominant Logic
  • Service Blueprinting
  • Charakteristika von Data Services und Data Products
  • Datenquellen
  • Rapid Service Prototyping und Service Engineering

Modul B "Data-specific Business Model Design"

Leitidee

Dieses Modul soll den Studierenden aufzeigen, wie mit Data Products wirtschaftliche Geschäftsmodelle entwickelt werden.

Inhalte

  • Grundlagen Business Model Design und Business Model Canvas
  • Service Ecosystem Design
  • Vom Service Blueprint zum Business Model
  • Quantifizierung des Business Models
  • Iterative Verbesserung bis zur Produktreife
  • Präsentation mehrerer Cases durch Firmenvertreter

Modul C "Praxis Workshop"

Leitidee

In diesem Modul sollen die Studierenden die Lerninhalte der Module "Smart Service und Data Product Design" und "Data-specific Business Model Design" an einem zusammenhängenden Case moderiert anwenden können.

Inhalte

  • Anwendung der Konzepte des Smart Service Design und Data-specific Business Model Designs an einer grösseren, integrierten Fallstudie
  • Abschluss in Form eines moderierten Workshops über die Dauer von 2 Tagen in einer Service Design Location

Modul D "Datenschutz und Datensicherheit"

Leitidee

Dieses Modul soll den Studierenden die Grundlagen des Datenschutzes und der Datensicherheit im Zusammenhang mit Smart Service Design vermitteln.

Inhalte

  • Grundlagen des Datenschutzes und der Datensicherheit
  • Relevante Aspekte für das Data Product Design
  • Rechtliche Aspekte und Ethik
  • Diskussion von real life cases

Methodik

Das Ausbildungsprogramm umfasst verschiedene Aktivitäten, wie etwa Vorlesungen, praxisorientierte Übungen und Fallbeispiele, Firmenpräsentationen, Gruppenarbeiten und Selbststudium (Vor- und Nachbereitung).

Unterricht

Das CAS Smart Service Engineering (Data Product Design) wird berufsbegleitend absolviert. Ein Unterrichtstag ist in zwei Blöcke von je 4 Lektionen unterteilt, wobei die Lektionen gemischt aus Unterrichtsanteilen und praktischen Arbeiten bestehen. In den praktischen Arbeiten vertiefen die Teilnehmerinnen und Teilnehmer das Gelernte an konkreten Beispielen und an eigenen Fallstudien, die in kleinen Teams bearbeitet werden.

Der Unterricht für die Module A, B und D findet einmal pro Woche freitags von 9:00 bis 17:00 (8 Lektionen) statt. Der Praxis-Workshop (Modul C) wird an einem Unterrichts-Freitag vorbereitet und anschliessend an zwei aufeinanderfolgenden Tagen (Donnerstag/Freitag) durchgeführt.

Den individuellen Stundenplan erhalten die Studierenden spätestens einen Monat vor Studienbeginn. Die schulfreie Zeit richtet sich nach den Schulferien der Stadt Winterthur.

Beratung und Kontakt

Veranstalter

Dozierende

Das Team der Dozierenden besteht aus ausgewiesenen Fachpersonen mit Kompetenzen im akademischen und praktischen Bereich. Hier ein Auszug der Dozierendenliste:

  • Dr. Philipp Stalder, IWI
  • Dr. Michael Widmer, ZSR
  • Prof. Dr. Marc Rennhard, InIT
  • Dr. Jürg Meierhofer, IDP

Anmeldung

Zulassung

Die Zulassung zu einem CAS setzt grundsätzlich einen Hochschulabschluss (Fachhochschule, HTL, HWV, Uni, ETH) voraus. Es können aber auch Praktikerinnen und Praktiker mit vergleichbarer beruflicher Kompetenz zugelassen werden, wenn sich die Befähigung zur Teilnahme aus einem anderen Nachweis ergibt. Über die definitive Zulassung entscheidet die Studienleitung.

Anmeldeinformationen

Wir führen keine Wartelisten und bieten keine Platzreservationen an.
Sollte bei der vorangehenden Durchführung ein Platz frei werden, berücksichtigen wir die Reihenfolge gemäss Anmeldeeingang.

Startdaten und Anmeldung

Start Anmeldeschluss Anmeldelink
26.02.2021 26.01.2021 Anmeldung

Downloads und Broschüre

Downloads

Links

Infomaterial bestellen

Broschüre