Machine Perception and Cognition Group

«KI ist DIE Schlüsseltechnologie des digitalen Wandels in allen Branchen und Sektoren und sie hat starke Auswirkungen auf unsere Gesellschaften. Darum leistet unsere Forschung wichtige Beiträge zu robusten und vertrauenswürdigen KI-Methoden, und wir vermitteln mit Begeisterung deren sichere Umsetzung und Anwendung.»
Expertise

- Mustererkennung mit Deep Learning
- Maschinelle Wahrnehmung, Computer Vision und Sprechererkennung
- Entwicklung neuronaler Systeme
Die Machine Perception and Cognition-Gruppe forscht über Mustererkennung und arbeitet an einer Vielzahl von Aufgaben mit Bild-, Ton- oder allgemein Signaldaten. Wir befassen uns mit der Methodik der tiefen neuronalen Netze (Deep Neural Networks) und des Reinforcement Learning, inspiriert durch biologisches Lernen. Jede unserer Aufgaben hat ihr eigenes Lernziel (z. B. Erkennung, Klassifizierung, Clustering, Segmentierung, Novelty Detection, Steuerung) und ihren eigenen Anwendungsfall (z. B. vorausschauende Instandhaltung (Predictive Maintenance), Sprechererkennung für Multimedia-Indizierung, Dokumentanalyse, optische Notenerkennung, Computer Vision für industrielle Qualitätskontrolle, automatisiertes maschinelles Lernen, Deep Reinforcement Learning für automatisierte Spiele oder Gebäudeleittechnik). Diese werfen ihrerseits ein Licht auf verschiedene Aspekte des Lernprozesses. Wir nutzen diese Erfahrungen, um allgemeinere KI-Systeme zu kreieren, die auf neuronalen Architekturen basieren.
Angebote
- Einblick: Keynotes, Trainings
- KI-Beratung: Workshops, Expertenunterstützung, Beratung, Technikfolgenabschätzung
- Forschung und Entwicklung: kleine bis grosse Gemeinschaftsprojekte, Drittmittelforschung, studentische Projekte, praxiserprobte Prototypen
Team
Projekte
-
Deep-Learning-basierter Spracherkenner mit beschränkten Trainingsdaten (DeLLA) (DeLLA)
Spracherkennung basierend auf Deep Neural Networks (DNNs) bricht aktuell alle Rekorde und hat bereits Eingang in verschiedene Produkte gefunden. Solche Systeme wurden mit tausenden Stunden Sprachmaterial trainiert für Anwendungen/Sprachen, wo entsprechend riesige annotierte Datenmengen verfügbar…
abgeschlossen, 09/2016 - 11/2017
-
TAILOR – Foundations of Trustworthy AI - Integrating Reasoning, Learning and Optimization
The main ambition of TAILOR is to build the capacity of providing the scientific foundations for Trustworthy AI in Europe by developing a network of research excellence centers with a technical focus on combining research excellence in the areas of learning, optimisation and reasoning . The current…
abgeschlossen, 01/2020 - 12/2021
-
3D-Master for a Digitized Manufacturing Platform
Wir erweitern die Real Time Manufacturing Services von Bossard durch die automatische Erstellung von Angeboten für Spezialteile. Das Herzstück ist ein von KI erstellter 3D-Master, der alle verfügbaren Teilinformationen vereint und die Preisfindung und Machbarkeitsbewertung für viele…
abgeschlossen, 12/2022 - 05/2025
-
DISTRAL: Industrial Process Monitoring for Injection Molding with Distributed Transfer Learning
We develop a distributed machine learning system to sort out defect plastic parts during production. Main challenge is the transferability of learnt process know-how from case to case; the solution builds on domain adaptation, continual data-centric deep learning and federated edge computing.
abgeschlossen, 10/2022 - 03/2025
-
QualitAI - Quality control of industrial products via deep learning on images
Mit dem Projekt QualitAI wird eine vollautomatische Qualitätskontrollanlage realisiert. Die Anlage wird in der medizinaltechnischen Nische der Ballonkatheter auf den Markt gebracht. Die Anlage kann die heutigen Prozesse stark vereinfachen und beschleunigen. Durch eine Vollautomatisierung und das…
abgeschlossen, 08/2017 - 01/2020
-
Libra: A One-Tool Solution for MLD4 Compliance
Compared with earlier regulations, the 4th European Money Laundering Directive (MLD4) imposes rigorously increased requirements. It compels obliged entities to conduct in depth screenings of customers and their associations. The Libra Project aims at providing a one tool solution for meeting MLD4…
abgeschlossen, 09/2016 - 05/2019
-
Standardized Data and Modeling for AI-based CoVID-19 Diagnosis Support on CT Scans (SDMCT) (SDMCT)
Hospitals and research institutes are highly investigating applications of AI in medical imaging. However, developed models and datasets are barely mergeable, and the research results are not reproducible on different datasets due to different CT scanners used. Radiologists told us that “unifying…
abgeschlossen, 05/2020 - 10/2020
-
Synthetic data generation of CoVID-19 CT/X-rays images for enabling fast triage of healthy vs. unhealthy patients
The automatic analysis of X-ray/CT images through artificial intelligence models can be useful to automate the clinical scanning procedure. Nonetheless, the limited access to real COVID patient data leads to the need of synthesizing image samples. The goal of this project is to use existing CT/X-ray…
abgeschlossen, 05/2020 - 07/2020
-
Good practices for responsible development of AI-based applications in healthcare
This project will identify proven methods, practices and standards that support responsible research and development of AI systems for health. They will be tested in use cases from medical imaging and neurotechnology, publicly released and published as a guideline of recommended best practices.
abgeschlossen, 09/2021 - 08/2023
-
Accessible Scientific PDFs for All
PDF is the most popular document format to provide and distribute information on the internet. It was developed by Adobe 1996 but has been an open format since 2008. It was estimated in 2015 that more than 2.5 trillion PDF documents exist on the internet, covering all aspects of life and research,…
abgeschlossen, 04/2021 - 05/2025
-
AI powered CBCT for improved Combination Cancer Therapy (AC3T)
The project enables a novel, combined, adaptive cancer therapy combining tumor treating field and radiation therapy due to significantly improved static (3D) and time-resolved (4D) low dose Cone Beam Computer Tomography images based on artificial intelligence image reconstruction algorithms.
abgeschlossen, 05/2022 - 02/2025
-
Pilot study machine learning for injection molding processes
Forschende des CAI und InES untersuchen im Rahmen eines technischen Deep Dive gemeinsam die Chancen, Prozesswissen über Spritzgussverfahren in Neuronalen Netzen zu bündeln und auf neue Anwendungsszenarios zu übertragen.Die Gruppen von Prof. Stadelmann (Computer Vision, Perception & Cognition,…
abgeschlossen, 09/2021 - 03/2022
-
AUTODIDACT – Automated Video Data Annotation to Empower the ICU Cockpit Platform for Clinical Decision Support
Monitoring diverse sensor signals of patients in intensive care can be key to detect potentially fatal emergencies. But in order to perform the monitoring automatically, the monitoring system has to know what is currently happening to the patient: if the patient is for example currently being moved…
abgeschlossen, 02/2022 - 12/2022
-
DIR3CT: Deep Image Reconstruction through X-Ray Projection-based 3D Learning of Computed Tomography Volumes
Project DIR3CT aims at improving the image quality of CBCT images by deep learning (DL) the 3D reconstruction from X-ray images end-to-end. This enables a novel CBCT product to be used during radiation therapy and will allow the use of these images for adaptive treatment.
abgeschlossen, 02/2020 - 05/2022
-
DeepText: Intelligente Textanalyse mit Deep Learning
DeepText entwickelt ein Software-Framework, mit dem automatisch Texte analysiert werden können, um wichtige Informationen zu extrahieren. Das Framework basiert auf modernen Algorithmen aus dem Maschinellen Lernen (Deep Learning), die Texte besser analysieren können als traditionelle Methoden. Damit…
abgeschlossen, 09/2016 - 02/2018
-
Talkalyzer
Erkennung von Rede-Anteilen mittels Sprecher-Erkennung in Echtzeit
abgeschlossen, 05/2013 - 11/2014
-
FarmAI – Künstliche Intelligenz für den Farming Simulator
Für die weltweit erfolgreiche Videospiel-Serie “Farming Simulator” von GIANTS Software GmbH wird mittels künstlicher Intelligenz (KI) ein neuer, langfristig unterhaltender, einfach erweiterbarer Spielmodus ermöglicht. In diesem Projekt werden Reinforcement Learning Algorithmen eingesetzt, um…
abgeschlossen, 12/2016 - 05/2018
-
Radiosands
Radiosands ist eine begehbare Installation, in der mehrere gleichzeitig stattfindende Radiosendungen analysiert und neu zusammengesetzt werden. Die Installation nutzt die Geschwindigkeit und algorithmische Potenz digitaler Technik, um eine neue Erfahrung zu schaffen: Eine Echtzeit-Collage von…
abgeschlossen, 05/2018 - 02/2020
-
RealScore – Scanning of Real-World Sheet Music for a Digital Music Stand
ScorePad’s sheet music scanning service works for high quality input; to scale up business, it should work as well for smartphone pictures, used sheets etc. Project RealScore enhances the successful predecessor project by making deep learning adapt to unseen data through unsupervised learning.
abgeschlossen, 09/2019 - 05/2022
-
Visual Food Waste Analysis for Sustainable Kitchens (FWA)
Ein neuartiger Ansatz für die vollautomatische Analyse von Lebensmittelabfällen für Großküchen wird untersucht. Lebensmittelabfälle werden mit einer neuen Kameraeinrichtung automatisch erkannt, in Echtzeit analysiert und mit Hilfe von maschinellen Lernalgorithmen klassifiziert.
abgeschlossen, 07/2019 - 09/2021
Publikationen
-
Meyer, Benjamin; Sager, Pascal; Abdulkadir, Ahmed; Grewe, Benjamin F.; Schuetz, Philipp; Stadelmann, Thilo; Burn, Felice,
2025.
In:
2025 12th IEEE Swiss Conference on Data Science (SDS).
12th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 26-27 June 2025.
IEEE.
Verfügbar unter: https://doi.org/10.21256/zhaw-33457
-
Yan, Peng; Abdulkadir, Ahmed; Schatte, Gerrit A.; Aguzzi, Giulia; Gha, Joonsu; Pascher, Nikola; Rosenthal, Matthias; Gao, Yunlong; Grewe, Benjamin F.; Stadelmann, Thilo,
2025.
Learning actionable world models for industrial process control[Paper].
In:
2025 12th IEEE Swiss Conference on Data Science (SDS).
12th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 26-27 June 2025.
IEEE.
Verfügbar unter: https://doi.org/10.21256/zhaw-33031
-
Prabhu Siddhartha, Guptara, Hrsg.,
2025.
Global Resilience White Paper
; 2.
Global Resilience Publishing.
Verfügbar unter: https://doi.org/10.21256/zhaw-32180
-
Ali, Waqar; Vascon, Sebastiano; Stadelmann, Thilo; Pelillo, Marcello,
2024.
Hierarchical glocal attention pooling for graph classification.
Pattern Recognition Letters.
186, S. 71-77.
Verfügbar unter: https://doi.org/10.1016/j.patrec.2024.09.009
-
Bolt, Peter; Ziebart, Volker; Jaeger, Christian; Schmid, Nicolas; Stadelmann, Thilo; Füchslin, Rudolf Marcel,
2024.
A simulation study on energy optimization in building control with reinforcement learning[Paper].
In:
Suen, Ching Yee; Krzyzak, Adam; Ravanelli, Mirco; Trentin, Edmondo; Subakan, Cem; Nobile, Nicola, Hrsg.,
Artificial Neural Networks in Pattern Recognition.
11th IAPR TC3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR), Montreal, Canada, 10-12 October 2024.
Cham:
Springer.
Verfügbar unter: https://doi.org/10.1007/978-3-031-71602-7_27
Sonstige Veröffentlichungen
Wann | Art | Titel |
---|---|---|
2023 | Extended Abstract | Thilo Stadelmann. KI als Chance für die angewandten Wissenschaften im Wettbewerb der Hochschulen. Workshop (“Atelier”) at the Bürgenstock-Konferenz der Schweizer Fachhochschulen und Pädagogischen Hochschulen 2023, Luzern, Schweiz, 20. Januar 2023 |
2022 | Extended Abstract | Christoph von der Malsburg, Benjamin F. Grewe, and Thilo Stadelmann. Making Sense of the Natural Environment. Proceedings of the KogWis 2022 - Understanding Minds Biannual Conference of the German Cognitive Science Society, Freiburg, Germany, September 5-7, 2022. |
2022 | Open Research Data | Felix M. Schmitt-Koopmann, Elaine M. Huang, Hans-Peter Hutter, Thilo Stadelmann, und Alireza Darvishy. FormulaNet: Ein Benchmark-Datensatz für die Erkennung mathematischer Formeln. Eine ungelöste Teilaufgabe der Dokumentenanalyse ist die Erkennung mathematischer Formeln (MFD). Forschungen von uns und anderen haben gezeigt, dass bestehende MFD-Datensätze mit Inline- und Display-Formel-Etiketten klein sind und eine unzureichende Etikettierungsqualität aufweisen. Es besteht daher ein dringender Bedarf an Datensätzen mit besserer Beschriftungsqualität für die zukünftige Forschung im Bereich MFD, da diese einen großen Einfluss auf die Leistung der darauf trainierten Modelle haben. Wir stellen eine fortschrittliche Etikettierungspipeline und einen neuen Datensatz namens FormulaNet vor. Mit über 45.000 Seiten ist FormulaNet unserer Meinung nach der größte MFD-Datensatz mit Inline-Formelbeschriftungen. Unser Datensatz soll bei der Bewältigung der MFD-Aufgabe helfen und kann die Entwicklung neuer Anwendungen ermöglichen, wie z. B. die Zugänglichkeit mathematischer Formeln in PDFs für sehbehinderte Benutzer von Bildschirmlesegeräten. |
2020 | Open Research Data | Lukas Tuggener, Yvan Putra Satyawan, Alexander Pacha, Jürgen Schmidhuber, and Thilo Stadelmann, DeepScoresV2. The DeepScoresV2 Dataset for Music Object Detection contains digitally rendered images of written sheet music, together with the corresponding ground truth to fit various types of machine learning models. A total of 151 Million different instances of music symbols, belonging to 135 different classes are annotated. The total Dataset contains 255,385 Images. For most researches, the dense version, containing 1714 of the most diverse and interesting images, is a good starting point. |