Forschungsschwerpunkt Bioinformatics
Wir entwickeln praktische Lösungen an der Schnittstelle von Biologie, Medizin und Computerwissenschaften.
Über uns
Der Schwerpunkt Bioinformatik konzentriert sich auf theoretische und rechnerische Aspekte der Modellierung des Prozesses der Genomevolution und des adaptiven Wandels. Ziel ist Grundlagenforschung und neue Methoden der Bioinformatik in reale Anwendungen zu bringen, die zum Beispiel von der Biotechnologie bis zur biomedizinischen Forschung und Forensik reichen. Der Forschungsbereich ist in verschiedene Forschungsgruppen gegliedert, die jeweils auf gewissen Methoden oder Anwendungsdomänen fokussieren.
Unsere Forschungsgruppen
Computational Genomics
Die Forschungsgruppe ist auf Computergestützte Genomik und Modellierung stochastischer Prozesse in der molekularen Evolution spezialisiert: Statistische und computergestützte Methoden zur Analyse von proteinkodierenden Genen und Genfamilien, Selektion, Adaption, Phylodynamik und Evolution, einschliesslich Wirt-Pathogen-Interaktionen; Anwendungen in der medizinischen Genomik, Epidemiologie, Metagenomik und Forensik. Die Forschungsgruppe entwickelt rechnergestützte Methoden für die Genomanalyse, insbesondere zur Untersuchung von Repeat-Sequenzen und Indel Evolution (z.B. Anwendungen in der Krebsforschung und Biotechnologie) sowie zur Untersuchung der Dynamik und Evolution von Viren und anderen Pathogenen.
Biomedical String Analysis
Die Forschungsgruppe ist auf die Analyse von Zeichenketten (Englisch "strings") spezialisiert. Die Forschungsprojekte und Anwendungen fokussieren sich auf genomische Daten und auf die natürliche Sprache im biomedizinischen Bereich. Die Gruppe entwickelt neuen Methoden in den Computational Sciences und setzt bestehende Methoden ein. Das umfasst: Mathematische Modellierung, Computational Statistics. Algorithmen Design, Diskrete Mathematik, Machine und Deep Learning, Natural Language Processing, Semantic Web Technologies.
Applied Mathematical Biology
Die Forschungsgruppe entwickelt mathematische Modelle und Methoden und wendet sie an der Schnittstelle zwischen Mathematik und offenen Forschungsfragen in der Biologie an. Zu den verwendeten Methoden gehören Standardkalkül, Differentialgleichungen, maschinelles Lernen und die Theorie dynamischer Systeme zur Beschreibung und Vorhersage biologischer Phänomene. Insbesondere untersucht die Gruppe die Beziehung zwischen Codon Usage Bias und Genexpression über das Konzept der translationalen Effizienz und wendet diese Erkenntnisse auf Codon-Optimierungsprobleme an. Weitere Interessen liegen in der Erforschung der Wechselwirkungen zwischen Krebs und Immunsystem und deren Vorhersagekraft für Krebsimmuntherapien sowie in der Populationsgenetik der frühen Infektionsphase von teilweise rekombinierenden Viren.
Lehre
Der Schwerpunkt umfasst Lehrveranstaltungen auf BSc-, MSc- und PhD-Stufe in Computational Sciences mit Fokus Computational Genomics, Bioinformatik, mathematischer Modellierung, Biostatistik, Programmierung und Algorithmen für die Molekularbiologie.
Team Bioinformatics
-
Abteilungsleitung, Schwerpunktleitung
-
Studiengangleitung MSc Vertiefung in Applied ...
Projekte
- Vorherige Seite
- Seite 01
- Seite 02
- Seite 03
-
Frequentist estimation of the evolutionary history of sequences with substitutions and indels
High throughput sequencing technologies have permitted a wide range of scientists to observe an astonishing molecular diversity across all domains of life. Since all observed molecular sequences area result of a long evolutionary history, most informative inferences can be made only when analysing genomic sequences ...
-
Radiosands
Radiosands ist eine begehbare Installation, in der mehrere gleichzeitig stattfindende Radiosendungen analysiert und neu zusammengesetzt werden. Die Installation nutzt die Geschwindigkeit und algorithmische Potenz digitaler Technik, um eine neue Erfahrung zu schaffen: Eine Echtzeit-Collage von klanglichen Fragmenten, ...
-
Positive selection detection of genome from Ralstonia bacterium
Positive selection detection of genome from Ralstonia bacterium with the use of HPC cluster. Ralstonia solanacearum is an aerobic non-spore-forming, Gram-negative, plant pathogenic bacterium. R. solanacearum is soil-borne and motile with a polar flagellar tuft. It colonises the xylem, causing bacterial wilt in a ...
-
Bio-SODA – Enabling Complex, Semantic Queries to Bioinformatics Databases through Intuitive Searching over Data (SNSF NRP 75 "Big Data")
One of the major promises of Big Data lies in the simultaneous mining of multiple sources of data. This is particularly important in life sciences, where different and complementary data are scattered across multiple resources. To overcome this issue, the use of RDF/semantic web technology is emerging, but querying ...
-
Exploring the silent fitness landscape
Since Darwin, natural selection has been recognized as one of major biological forces shaping genetic patterns in molecular data. Detecting selection on proteins has become an indispensible part of genome studies. Remarkably selection can act not only on proteins, but also on synonymous codons translating into the ...
Publikationen
-
Apsley, Abner T.; Domico, Emma R.; Verbiest, Max A.; Brogan, Carly A.; Buck, Evan R.; Burich, Andrew J.; Cardone, Kathleen M.; Stone, Wesley J.; Anisimova, Maria; Vandenbergh, David J.,
2023.
A novel hypervariable variable number tandem repeat in the dopamine transporter gene (SLC6A3).
Life Science Alliance.
6(4), S. e202201677.
Verfügbar unter: https://doi.org/10.26508/lsa.202201677
-
Verbiest, Max; Maksimov, Mikhail; Jin, Ye; Anisimova, Maria; Gymrek, Melissa; Bilgin Sonay, Tugce,
2022.
Journal of Evolutionary Biology.
36(2), S. 321-336.
Verfügbar unter: https://doi.org/10.1111/jeb.14106
-
Jowkar, Gholamhossein; Pecerska, Julija; Maiolo, Massimo; Gil, Manuel; Anisimova, Maria,
2022.
Systematic Biology.
Verfügbar unter: https://doi.org/10.1093/sysbio/syac050
-
Sima, Ana Claudia; Mendes de Farias, Tarcisio; Anisimova, Maria; Dessimoz, Christophe; Robinson-Rechavi, Marc; Zbinden, Erich; Stockinger, Kurt,
2022.
Distributed and Parallel Databases.
40(2), S. 409-440.
Verfügbar unter: https://doi.org/10.1007/s10619-022-07414-w
-
Lardos, Andreas; Aghaebrahimian, Ahmad; Koroleva, Anna; Sidorova, Julia; Wolfram, Evelyn; Anisimova, Maria; Gil, Manuel,
2022.
Frontiers in Bioinformatics.
2(827207).
Verfügbar unter: https://doi.org/10.3389/fbinf.2022.827207