Delete search term

Header

Quick navigation

Main navigation

Robo-Mate: Intelligent, flexible exoskeleton

Set to get underway in September 2013, the objective of the Robo-Mate project is to develop an intelligent, easy-to-manoeuvre, and wearable body exoskeleton for manual-handling work. The project comprises 12 partners from 7 European countries, including key players from industry and academia.

Various manual work tasks necessary to industrial manufacturing processes are difficult to automate – even today - due to their complexity. This is particularly the case in assembling and dismantling operations, such as those used in the automotive or food processing industries, where material handling and heavy-goods lifting are typically carried out by shop-floor workers. This type of work, however, entails severe risk of injury, resulting in low job productivity, high long-term dropout rates, and even disability. In fact, as many as 44 million workers in the European Union are affected by work-place related musculoskeletal disorders (MSDs), representing a total annual cost of more than 240 billion Euros. To overcome these industrial and societal challenges, a new project, called Robo-Mate, has been designed.

The fundamental idea behind Robo-Mate is to enhance work conditions for load workers and facilitate repetitive lifting tasks, thereby reducing the incidence of work-place related injury and disease. As a consequence, productivity, flexibility and the quality of production will increase. Bringing this concept to fruition involves merging human-guided manipulators with computer-controlled industrial robots in order to create a human-guided and computer-supported exoskeleton for use in various industries. Exoskeletons can readily be found in certain fields and their development to date has been mainly driven by military and medical applications. However, such models are ill-suited for industrial use due to excessive weight or inadequate functionality, such as not being able to provide the lifting and/or manual handling support indispensable to industrial settings. Therefore, developing an exoskeleton specifically destined for use in industrial environments is crucial.

Robo-Mate components
Robo-Mate components

Funded with €4.5 million by the 7th Framework Programme for Research and Technological Development of the European Union (FP7), the 3-year Robo-Mate project will be led by Prof. Dr. Hans Wernher van den Venn, Head of the Institute of Mechatronic Systems (IMS) at the Zurich University of Applied Science (ZHAW), and managed by accelopment AG in Switzerland.

To that end, the system designed for the Robo-Mate project is based on two main aspects: human safety/compatibility and industrial benefit. The exoskeleton consists of a lightweight, flexible, easy-to-wear, and fully movable upper body and a stability providing lower body. With a maximum weight of 30 kg and a size of 1.6 m to 1.8 m, it enables workers to move locally, can be used as posture support, and can be utilised in tasks that require frequent lifting. Development includes modelling and simulating the exoskeleton in a virtual-factory environment at the Fraunhofer Institute for Industrial Engineering (IAO). Components that have been previously developed and tested will be assembled into an initial prototype and demonstrations will be held at INDRA SAS – the French forerunner in the vehicle recycling sector – and COMPA S.A. – a Romanian automotive components manufacturer. The Centro Ricerche Fiat (CRF) will test the exoskeleton in their lab and on the Fiat shop floor to demonstrate the benefits of the device.
Putting the Robo-Mate exoskeleton into service will engender practical and far-reaching impacts, including making the industrial work-site safer for skilled personnel, providing a means for workers to apply less physical effort, and facilitating higher-quality outputs resulting in industrial benefit.
Additionally, the exoskeleton offers a solution to Europe’s rapidly aging society by giving options for retaining older workers in skilled working areas and enabling them to handle work more efficiently due to the reduction in physical pressure. Furthermore, it is a cost-effective and flexible programme that can reduce the financial burden for industry and society caused by work-related MSDs.

Project details

Project website: www.robo-mate.eu

Funding: European Commission

Project status: ongoing

Links to our project partners:

Robo-Mate in action: