Delete search term


Quick navigation

Main navigation

Research Centre of Computational Health

The devision of Computational Health is specialised in the confluence of data-driven and mechanistic modelling approaches in medicine and biology. The methods encompass machine learning for image and signal analysis, graphical networks, optimization of stochastic models and physiological simulations.

About us

The centre Computational Health addresses fundamental questions in biology and medicine using computer-assisted, data-driven methods. Important tools are machine learning for image and signal analysis, parameter estimation for differential equation systems and multiphysics simulation. Effective validation strategies are used to deal with the unknown.

Our Research Groups

Biomedical Simulation

The research group specializes in modeling biological and medical systems. New approaches are developed to simulate physiological processes and to predict pathological changes. In particular, in-depth knowledge of biological/physiological processes is incorporated into multi-physics simulations.
The group develops algorithms for parameter and uncertainty estimation of physically motivated stochastic models. In particular, machine learning methods are combined with Bayesian modeling for dimensionality reduction. These methods are widely used in medicine and life sciences.

Medical Image Analysis

The research group applies machine learning techniques to interpret medical image data. This way, features are extracted for the characterization of disease patterns and for use as diagnostic markers. Of particular interest are the radiomic and morphological analysis of diagnostic medical imaging data. The group pursues the goal of establishing reproducible, image-based biomarkers by means of explainable artificial intelligence and ensuring their clinical utility.

Medical Data Modelling

The research group uses statistical and machine learning methods to model and uncover causal relations in medical data, especially to study pathophysiological processes. Categorial patient data and imaging date, e.g. magnetic resonance imaging, are processed to extract clinical knowledge.

Biosensor Analysis and Digital Health

The research group studies data from wearables and biosensors using time series analysis and combines them with biological-physical models to robustly characterize physiological systems. These data sources are used for Patient Reported Outcomes in clinical practice and for the further development of patient-centered medicine.

Team Computational Health