Prof. Dr. Jack Rohrer

Prof. Dr. Jack Rohrer

Prof. Dr. Jack Rohrer
ZHAW Life Sciences und Facility Management
Einsiedlerstrasse 31
8820 Wädenswil

+41 (0) 58 934 57 17
jack.rohrer@zhaw.ch

Persönliches Profil

Leitungsfunktion

  • Leitung Fachgruppe Zellphysiologie und Zell-Engineering

Tätigkeit an der ZHAW als

Leiter der Fachgruppe Zellphysiologie und Zell-Engineering, Spezialgebiete: Glykobiologie, rekombinante Proteinexpression, Entwicklung zellbasierender Assays, induzierte pluripotente Stammzellen, subzelluläres Drug Delivery, lysosomale Biogenese und generell molekulare Mechanismen des intrazellulären Proteintransportes.

https://www.zhaw.ch/de/lsfm/institute-zentren/icbt/zellbiologie-und-tissue-engineering/zellphysiologie-zell-engineering/

Arbeits- und Forschungsschwerpunkte, Spezialkenntnisse

Spezifische technische Kompetenzen beinhalten Mikroskopie (einschliesslich konfokaler Mikroskopie und life imaging) sowie eine Vielzahl an Methoden aus den Gebieten Molekularbiologie, Biochemie und Zellbiologie. Forschungsschwerpunkte sind der Aufbau von Zell-basierenden Assays, induzierte pluripotente Stammzellen und subzelluläres Drug Delivery.

Aus- und Fortbildung

Studium Biologie II an der Universität Basel (1984-1988).
Dissertation am Biozentrum in der Abteilung Biochemie der Universität Basel (1988-1992).
PostDoc an der Washington University School of Medicine, Division Hematology/Oncology, St. Louis, MO, USA (1992-1995).
PostDoc am Biozentrum in der Abteilung Biochemie der Universität Basel (1996).
Prof. Dr. Max Cloetta Stipendiat am Friedrich Miescher Institut der Novartis Forschungsstiftung (1997-2002).
Oberassistent am Physiologischen Institut der Universität Zürich (2002-2008).

Beruflicher Werdegang

1997-2002 Aufbau einer eigenen Forschungsgruppe als Prof. Dr. Max Cloetta Stipendiat am Friedrich Miescher Institut der Novartis Forschungsstiftung.
1999 Privatdozent der Universität Basel auf dem Gebiet Zellbiologie.
2004 Privatdozent der Universität Zürich für Physiologie und Zellbiologie.
2007 Titularprofessor der Universität Zürich.
2008 Professor in der Abteilung Biotechnologie der Zürcher Hochschule für Angewandte Wissenschaften

Mitglied in Netzwerken

Projekte

Projektleitung

Publikationen

; Mathes, Stephanie; ; Rohrer, Jack,

2016.

Zurich university of applied sciences : center for cell biology and tissue engineering

[Poster].

In:

Roche Symposium, Basel, 2016.

Beiträge, peer-reviewed

; ; ; ; ; ; ().

Differential effects of lobe A and lobe B of the Conserved Oligomeric Golgi complex on the stability of {beta}1,4-galactosyltransferase 1 and {alpha}2,6-sialyltransferase 1.

.

Glycobiology, 21 864-876. Peer reviewed.

; ; ().

Dissection of a novel molecular determinant mediating Golgi to trans-Golgi network transition.

.

Cell Mol Life Sci., 65 3677-3687. Peer reviewed.

; ; ; ().

Transition of galactosyltransferase 1 from trans-Golgi cisterna to the trans-Golgi network is signal mediated.

.

Mol Biol Cell., 17 5153-5162. Peer reviewed.

; ; ; ; ; ; ; ().

Characterization of the TGN exit signal of the human mannose 6-phosphate uncovering enzyme

.

J Cell Sci., 118 2949-2956. Peer reviewed.

; ; ; ; ; ; ().

Drosophila Vps16A is required for trafficking to lysosomes and biogenesis of pigment granules.

.

J Cell Sci., 118 3663-3673. Peer reviewed.

; ; ; ; ().

Exon skipping of cathepsin B: mitochondrial targeting of a lysosomal peptidase provokes cell death.

.

J Biol Chem., 279 41012-41017. Peer reviewed.

; ; ().

The acidic cluster of the CK2 site of the cation-dependent mannose 6-phosphate receptor (CD-MPR) but not its phosphorylation is required for GGA1 and AP-1 binding.

.

J Biol Chem., 279 23542-23549. Peer reviewed.

; ().

The palmitoyltransferase of the cation-dependent mannose 6-phosphate receptor cycles between the plasma membrane and endosomes.

.

Mol Biol Cell., 15 2617-2626. Peer reviewed.

; ; ().

Characterization of the endosomal sorting signal of the cation-dependent mannose 6-phosphate receptor.

.

J Biol Chem, 278 24753-24758. Peer reviewed.

; ().

Galactosyltransferase - still up and running.

.

Biochimie, 85 261-274. Peer reviewed.

; ; ; ; ; ; ; ; ; ; ; ; ().

Alzheimer's Disease-related Overexpression of the Cation-dependent Mannose 6-Phosphate Receptor Increases Aβ Secretion

: ROLE FOR ALTERED LYSOSOMAL HYDROLASE DISTRIBUTION IN β-AMYLOIDOGENESIS.

J Biol Chem., 277 5299-5307. Peer reviewed.

; ; ; ().

ARF1.GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes.

.

Mol Biol Cell., 13 3672-3682. Peer reviewed.

; ; ; ().

Multiple signals regulate trafficking of the mannose 6-phosphate-uncovering enzyme.

.

J Biol Chem., 277 3544-3551. Peer reviewed.

; ().

Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network.

.

Mol Biol Cell., 12 1623-1631. Peer reviewed.

; ().

Lysosomal hydrolase mannose 6-phosphate uncovering enzyme resides in the trans-Golgi network.

.

Mol Biol Cell., 12 1623-1631. Peer reviewed.

; ; ().

A di-aromatic motif in the cytosolic tail of the mannose receptor mediates endosomal sorting.

.

J Biol Chem., 275 29694-29700. Peer reviewed.

; ; ; ; ; ; ; ().

Neonatal Lethality in Mice Deficient in XCE, a Novel Member of the Endothelin-converting Enzyme and Neutral Endopeptidase Family

.

J Biol Chem., 274 20450-20456. Peer reviewed.

; ; ().

Palmitoylation of the three isoforms of human endothelin-converting enzyme-1.

.

Biochem J., 340 649-656. Peer reviewed.

; ; ; ; ; ().

ErbB-1 and ErbB-2 Acquire Distinct Signalling Properties Dependent upon Their Dimerization Partner

.

Mol Cell Biol., 18 5042-5051. Peer reviewed.

; ; ().

Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail.

.

Proc Natl Acad Sci U S A, 94 14471-14476. Peer reviewed.

; ; ; ; ().

Transport through the yeast endocytic pathway occurs through morphologically distinct compartments and requires an active secretory pathway and Sec18p/N-ethylmaleimide-sensitive fusion protein.

.

Mol Biol Cell., 8 13-31. Peer reviewed.

; ; ; ().

The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane.

.

J Cell Biol, 132 565-576. Peer reviewed.

; ; ; ().

A determinant in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor prevents trafficking to lysosomes.

.

J Cell Biol., 130 1297-1306. Peer reviewed.

; ; ().

Determination of the structural requirements for palmitoylation of p63.

.

J Biol Chem, 270 9638-9644. Peer reviewed.

; ; ; ; ().

Reassessment of the subcellular localization of p63.

.

J Cell Sci, 108 2477-2485. Peer reviewed.

; ; ().

Retention of p63 in an ER-Golgi intermediate compartment depends on the presence of all three of its domains and on its ability to form oligomers.

.

J Cell Biol., 126 25-39. Peer reviewed.

; ; ; ().

end3 and end4: two mutants defective in receptor-mediated and fluid-phase endocytosis in Saccharomyces cerevisiae.

.

J Cell Biol, 120 55-65. Peer reviewed.

; ; ; ().

Identification of a novel sequence mediating regulated endocytosis of the G protein-coupled alpha-pheromone receptor in yeast.

.

Mol Biol Cell, 4 511-521. Peer reviewed.

; ; ().

Bacteriophages M13 and Pf3 tell us how proteins insert into the membrane.

.

J Struct Biol, 104, 1-3. 38-43. Peer reviewed.

; ().

The function of a leader peptide in translocating charged amino acyl residues across a membrane.

.

Science, 250 1418-1421. Peer reviewed.

Beiträge, nicht peer-reviewed

; ; ().

UNIT 15.8 Analysis of Protein Transport to Lysosomes

.

Current Protocols in Cell Biology, 27 15.8.1–15.8.12.