Bio-Inspired Modeling & Learning Systems
Introduction - Research and Teaching
We are concerned with design and development of adaptive systems for industrial and business applications, based on our expertise on machine learning, (recurrent) neural networks and bio-inspired algorithms as well as different simulation methods. A central speciality of our group is the development and research on complex (i.e. multi-methodical) forecasting systems. The polysemy of the term «LEARNING SYSTEMS» is an inherent element of the group’s spirit. Our self-concept as a team is the concept of a learning system. We are keen to learn more about new methods and more about ourselves in research and teaching. We are involved in teaching at Bachelor’s and Master’s level as well as continuing education and we actively work on the development of novel teaching methods to learn for our students and together with our students.
Research Topics & Expertise

«Intelligence is based on learning.»
Expertise
- Bio-inspired algorithms and neural networks
- Human in the loop machine learning
- Modeling of complex systems
- Self-learning systems for real world applications
- Forecasting methodologies
Topics

Our Team
Reference Projects
Current publications
-
2020.
The collaborative learning cellular automata density classification problem [ Paper ].
In:
Proceedings of the 2020 International Symposium on Nonlinear Theory and its Applications.
International Symposium on Nonlinear Theory and its Applications (NOLTA), Okinawa, Japan, 16–19 November 2020.
S. 268.
-
Miniussi, Myriam; Ott, Thomas ; Fellermann, Harold,
2020.
Impact of noise and network size in coupled maps with asymmetric influence amplification [ Paper ].
In:
Proceedings of the NOLTA 2020 Conference.
2020 International Symposium on Nonlinear Theory and Its Applications (NOLTA2020), Online Conference, 16-19 November 2020.
S. 282-285.
-
Gygax, Gregory ; Füchslin, Rudolf Marcel ; Ott, Thomas ,
2020.
In:
Proceedings of the NOLTA 2020 Conference.
2020 International Symposium on Nonlinear Theory and Its Applications (NOLTA2020), Online Conference, 16-19 November 2020.
S. 278-281.
-
Gygax, Gregory ; Schüle, Martin ,
2020.
A hybrid deep learning approach for forecasting air temperature [ Paper ].
In:
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg. ,
Artificial Neural Networks in Pattern Recognition.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Cham:
Springer.
S. 235-246.
Lecture Notes in Computer Science ; 12294.
Verfügbar unter : https://doi.org/10.1007/978-3-030-58309-5_19
-
Wróbel, Anna ; Gygax, Gregory ; Schmid, Andi; Ott, Thomas ,
2020.
In:
Schilling, Frank-Peter; Stadelmann, Thilo, Hrsg. ,
Artificial Neural Networks in Pattern Recognition.
9th IAPR TC 3 Workshop on Artificial Neural Networks for Pattern Recognition (ANNPR'20), Winterthur, Switzerland, 2-4 September 2020.
Cham:
Springer.
S. 257-265.
Lecture Notes in Computer Science ; 12294.
Verfügbar unter : https://doi.org/10.1007/978-3-030-58309-5_21
Current projects
- Seite 01
- Seite 02
- Seite 03
- Seite 04
- Seite 05
- Nächste Seite
-
Detektion von Drohnensignalen
Mikrodrohnen haben längst ihren Einzug in die Consumerwelt gefunden und werden immer erschwinglicher und einfacher in der Bedienung. Eine für Consumerdrohnen sehr vielversprechender Technik zur Erfassung ist die Detektion der ausgesendeten Funksignale. Mittels Deep Learning mit künstlichen neuronalen Netzwerken ...
-
Entwicklungsprototypen für die nachhaltige Digitalisierung der Lehre
Die COVID-19 Pandemie hat die Digitalisierung der Hochschullehre vorwärts katapultiert. Dadurch entstehen wertvolle Informationen, die für die nachhaltige Digitalisierung der Lehre relevant sind. Das Projekt erhebt strukturiert evidenzbasiert die Lehrerfahrungen und digitalen Kompetenzen an den Departementen Life ...