Institut für Datenanalyse und Prozessdesign (IDP)
Wir generieren Mehrwert aus Daten
Wir nutzen fortschrittliche datenbasierte Methoden, um innovative Lösungen für Wirtschaft und Industrie zu entwickeln. Wir begegnen realen Herausforderungen mit wissenschaftlichen Methoden und einem starken Fokus auf praktische Relevanz. Wir sind die führende Ausbildungsstätte und bevorzugte Partnerin für angewandte Data Science und Business Engineering in der Schweiz.
Schwerpunkte

Fortschrittliche, wissenschaftliche Instrumente und Werkzeuge für Lösungen in der Finanzbranche

Health and Environmental Analytics
Datenanalyse zur Ableitung interpretierbarer Ergebnisse unter Verwendung statistischer und maschineller Lerntechniken.

Maintenance, Mobility, AI & Society
Nutzung von KI und fortschrittlicher Modellierung für Innovationen in den Bereichen vorausschauende Wartung, Mobilitätslösungen und sozial ausgerichtete Systeme

Gewinnung von Erkenntnissen, Schaffung von Werten und Förderung von Innovationen in Geschäftsprozessen und Dienstleistungen

Visual Intelligence and Applications
Da visuelle Daten zu einer der reichhaltigsten und komplexesten Informationsquellen werden, ist Visual Intelligence ein wichtiger Pfeiler der modernen Datenwissenschaft, der neue Wege zur Analyse, Modellierung und Kommunikation durch Bilder, Videos und immersive Umgebungen ermöglicht.
Für Studierende
Consulting Services
Aktuelles
Unser Team
Publikationen
-
2022.
Enhancing the calibration of train resistance parameters with power measurements[Paper].
In:
Pombo, J., Hrsg.,
Proceedings of the Fifth International Conference on Railway Technology: Research, Development and Maintenance.
Fifth International Conference on Railway Technology, Montpellier, France, 22-25 August 2022.
Civil-Comp Press.
Civil-Comp Conferences ; 1.
Verfügbar unter: https://doi.org/10.4203/ccc.1.31.20
-
Schmid, Nicolas; Bruderer, Simon; Fischetti, Giulia; Paruzzo, Federico; Toscano, Giuseppe; Graf, Dominik; Fey, Michael; Henrici, Andreas; Grabner, Helmut; Wegner, Jan Dirk; Sigel, Roland K. O.; Heitmann, Björn; Wilhelm, Dirk,
2022.
Deconvolution of NMR spectra : a deep learning-based approach[Poster].
In:
Prisner, Thomas, Hrsg.,
EUROMAR 2022 Abstractbook.
European Conference on Magnetic Resonance (EUROMAR), Utrecht, The Netherlands, 10-14 July 2022.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
S. 242.
Verfügbar unter: https://doi.org/10.21256/zhaw-27336
-
Zgraggen, Jannik; Pizza, Gianmarco; Goren Huber, Lilach,
2022.
Uncertainty informed anomaly scores with deep learning : robust fault detection with limited data[Paper].
In:
Do, Phuc; Michau, Gabriel; Ezhilarasu, Cordelia, Hrsg.,
Proceedings of the 7th European Conference of the Prognostics and Health Management Society 2022.
7th European PHM, Turin, Italy, 6-8 July 2022.
State College:
PHM Society.
S. 530-540.
PHM Society European Conference ; 7.
Verfügbar unter: https://doi.org/10.36001/phme.2022.v7i1.3342
-
Viganò, Eleonora; Hertweck, Corinna; Heitz, Christoph; Loi, Michele,
2022.
In:
Faact '22: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency.
5th ACM Conference on Fairness, Accountability, and Transparency (FAccT), Seoul, Republic of Korea, 21–24 June, 2022.
New York:
Association for Computing Machinery.
S. 2293-2301.
Verfügbar unter: https://doi.org/10.1145/3531146.3534643
-
2022.
Scheduling with time-dependent processing time functions of V-shaped linear pieces.
In:
18th Swiss Operations Research Days (Swiss OR Days 2022), Winterthur, Switzerland, 2-3 June 2022.