Eingabe löschen

Kopfbereich

Schnellnavigation

Hauptnavigation

Dr. Wolfgang Tress

Dr. Wolfgang Tress

Dr. Wolfgang Tress

ZHAW School of Engineering
Forschungsschwerpunkt Organic Electronics & Photovoltaics

+41 (0) 58 934 42 23
wolfgang.tress@zhaw.ch

Persönliches Profil

Tätigkeit an der ZHAW als

Dozent

https://www.zhaw.ch/de/engineering/institute-zentren/icp/

Arbeits- und Forschungsschwerpunkte, Spezialkenntnisse

Organische Elektronik, Perovskitsolarzellen, Devicephysik, optoelektronische Messungen, Bauelementemodellierung, Halbleiter, ionisch-elektronische Leiter

Aus- und Fortbildung

Dipl.-Ing. Elektrotechnik, Universität Ulm 2008
Dr. rer.-nat. Physik, TU Dresden, 2012

Beruflicher Werdegang

Postdoc: Linköping University 2013
Postdoc: EPFL 2014
Ambizione Energy fellow, EPFL 2017
Marie-Curie fellow, LMU, München 2019

Mitglied in Netzwerken

Publikationen

Beiträge in wissenschaftlicher Zeitschrift, peer-reviewed
Weitere Publikationen
Mündliche Konferenzbeiträge und Abstracts
Publikationen vor Tätigkeit an der ZHAW

Publications in peer-reviewed scientific Journals

1. Reviews


8. Xiang, W. & Tress, W.* Review on Recent Progress of All‐Inorganic Metal Halide Perovskites and Solar Cells. Adv. Mater. 1902851 (2019). doi:10.1002/adma.201902851
7. Wang, F., Bai, S., Tress, W., Hagfeldt, A. & Gao, F. Defects engineering for high-performance perov-skite solar cells. npj Flexible Electronics 2, 22 (2018). www.nature.com/articles/s41528-018-0035-z/
6. Mingorance, A., Xie, H., Kim, H.-S., Wang, Z., Balsells, M., Morales‐Melgares, A., Domingo, N., Kazuteru, N., Tress, W., Fraxedas, J., Vlachopoulos, N., Hagfeldt, A. & Lira‐Cantu, M. Interfacial Engi-neering of Metal Oxides for Highly Stable Halide Perovskite Solar Cells. Advanced Materials Interfaces 5, 1800367 (2018). onlinelibrary.wiley.com/doi/abs/10.1002/admi.201800367
5. Correa-Baena, J.-P., Saliba, M., Buonassisi, T., Grätzel, M., Abate, A., Tress, W. & Hagfeldt, A. Prom-ises and challenges of perovskite solar cells. Science 358, 739–744 (2017). science.sciencemag.org/content/358/6364/739
4. Tress, W. Perovskite Solar Cells on the Way to Their Radiative Efficiency Limit – Insights Into a Suc-cess Story of High Open-Circuit Voltage and Low Recombination. Adv. Energy Mater. 7, 1602358 (2017). Invited Progress Report onlinelibrary.wiley.com/doi/10.1002/aenm.201602358/abstract
3. Tress, W. Metal Halide Perovskites as Mixed Electronic–Ionic Conductors: Challenges and Opportuni-ties—From Hysteresis to Memristivity. J. Phys. Chem. Lett. 3106–3114 (2017). Invited Perspective [OA] doi.org/10.1021/acs.jpclett.7b00975
2. Correa-Baena, J.-P., Abate, A., Saliba, M., Tress, W., Jacobsson, T. J., Grätzel, M. & Hagfeldt, A. The rapid evolution of highly efficient perovskite solar cells. Energy Environ. Sci. 10, 710-727 (2017). pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee03397k
1. Tang, Z., Tress, W. & Inganas, O. Light trapping in thin film organic solar cells. Materials Today 17, 389–396 (2014). [OA] www.sciencedirect.com/science/article/pii/S1369702114002089

2. Research articles

78. Jahanbakhshi, F., Mladenović, M., Kneschaurek, E., Merten, L., Gélvez-Rueda, M. C., Ahlawat, P., Li, Y., Dučinskas, A., Hinderhofer, A., Dar, M. I., Tress, W., Carlsen, B., Ummadisingu, A., Zakeeruddin, S. M., Hagfeldt, A., Schreiber, F., Grozema, F. C., Rothlisberger, U., Milić, J. V. & Graetzel, M. Unravelling the structural complexity and photophysical properties of adamantyl-based layered hybrid perovskites. J. Mater. Chem. A doi:10.1039/D0TA05022A (2020)
77.Gélvez‐Rueda, M. C., Ahlawat, P., Merten, L., Jahanbakhshi, F., Mladenović, M., Hinderhofer, A., Dar, M. I., Li, Y., Dučinskas, A., Carlsen, B., Tress, W., Ummadisingu, A., Zakeeruddin, S. M., Schreiber, F., Hagfeldt, A., Rothlisberger, U., Grozema, F. C., Milić, J. V. & Graetzel, M. Formamidinium-Based Dion-Jacobson Layered Hybrid Perovskites: Structural Complexity and Optoelectronic Properties. Advanced Functional Materials, 2003428 (2020)
76. Sadegh, F., Akin, S., Moghadam, M., Mirkhani, V., Ruiz‒Preciado, M. A., Wang, Z., Tavakoli, M. M., Graetzel, M., Hagfeldt, A. & Tress, W.* Highly efficient, stable and hysteresis‒less planar perovskite solar cell based on chemical bath treated Zn2SnO4 electron transport layer. Nano Energy 75, 105038 (2020).
75. Wang, Z. S., Ebadi, F., Carlsen, B., Choy, W. C. H. & Tress, W.* Transient Photovoltage Measure-ments on Perovskite Solar Cells with Varied Defect Concentrations and Inhomogeneous Recombination Rates. Small Methods, 2000290 (2020)
74. Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat Energy 5, 35–49 (2020).
73. Zhang, J., Wang, Z., Mishra, A., Yu, M., Shasti, M., Tress, W., Kubicki, D. J., Avalos, C. E., Lu, H., Liu, Y., Carlsen, B. I., Agarwalla, A., Wang, Z., Xiang, W., Emsley, L., Zhang, Z., Grätzel, M., Guo, W. & Hag-feldt, A. Intermediate Phase Enhances Inorganic Perovskite and Metal Oxide Interface for Efficient Photovoltaics. Joule 4, 222–234 (2020).
72. Xiang, W., Wang, Z., Kubicki, D. J., Wang, X., Tress, W., Luo, J., Zhang, J., Hofstetter, A., Zhang, L., Emsley, L., Grätzel, M. & Hagfeldt, A. Ba-induced phase segregation and band gap reduction in mixed-halide inorganic perovskite solar cells. Nat Commun 10, 1–8 (2019). [OA] doi: 10.1038/s41467-019-12678-5
71. Tress, W.*, Domanski, K., Carlsen, B., Agarwalla, A., Alharbi, E. A., Graetzel, M. & Hagfeldt, A. Per-formance of perovskite solar cells under simulated temperature-illumination real-world operating con-ditions. Nat. Energy 4, 568–574 (2019). doi:10.1038/s41560-019-0400-8
70. Ebadi, F., Taghavinia, N., Mohammadpour, R., Hagfeldt, A., & Tress, W.* Origin of Apparent Light-Enhanced and Negative Capacitance in Perovskite Solar Cells. Nat. Commun. 10, 1574 (2019). [OA] doi: 10.1038/s41467-019-09079-z
69. Hill, R. B. M., Turren-Cruz, S.-H., Pulvirenti, F., Tress, W. R., Wieghold, S., Sun, S., Nienhaus, L., Bawendi, M., Buonassisi, T., Barlow, S., Hagfeldt, A., Marder, S. R. & Correa-Baena, J.-P. Phosphonic Acid Modification of the Electron Selective Contact: Interfacial Effects in Perovskite Solar Cells. ACS Appl. Energy Mater. 2, 2402–2408 (2019).
68. Gegevičius, R., Franckevičius, M., Chmeliov, J., Tress, W. & Gulbinas, V. Electroluminescence Dy-namics in Perovskite Solar Cells Reveals Giant Overshoot Effect. J. Phys. Chem. Lett. 10, 1779–1783 (2019).
67. P. Mora-Fuentes, J., Cortizo-Lacalle, D., Collavini, S., Strutyński, K., R. Tress, W., Saliba, M., M. Zakeeruddin, S., Kosta, I., Melle-Franco, M., Grätzel, M., Luis Delgado, J. & Mateo-Alonso, A. A partially-planarised hole-transporting quart- p -phenylene for perovskite solar cells. Journal of Materi-als Chemistry C 7, 4332–4335 (2019).
66. Yavari, M., Ebadi, F., Meloni, S., Wang, Z., Yang, T. C.-J., Sun, S., Schwartz, H., Wang, Z., Niesen, B., Durantini, J. E., Rieder, P., Tvingstedt, K., Buonassisi, T., Choy, W. C. H., Filippetti, A., Dittrich, T., Olt-hof, S., Baena, J. P. C. & Tress, W.* How far does the defect tolerance of lead-halide perovskites range? The example of Bi impurities introducing efficient recombination centers. J. Mater. Chem. A (2019). doi:10.1039/C9TA01744E
65. Alharbi, E. A., Dar, M. I., Arora, N., Alotaibi, M. H., Alzhrani, Y. A., Yadav, P., Tress, W., Alyamani, A., Albadri, A., Zakeeruddin, S. M., & Graetzel, M. Perovskite Solar Cells Yielding Reproducible Photo-voltage of 1.20 V. Research (2019). doi:10.1155/2019/8474698
64. Valero, S., Collavini, S., Völker, S. F., Saliba, M., Tress, W., Zakeeruddin, S. M., Grätzel, M. & Delga-do, J. L. Dopant-Free Hole-Transporting Polymers for Efficient and Stable Perovskite Solar Cells. Mac-romolecules (2019). doi:10.1021/acs.macromol.9b00165
63. Xiang, W., Wang, Z., Kubicki, D. J., Tress, W., Luo, J., Prochowicz, D., Akin, S., Emsley, L., Zhou, J., Dietler, G., Grätzel, M. & Hagfeldt, A. Europium-Doped CsPbI2Br for Stable and Highly Efficient Inor-ganic Perovskite Solar Cells. Joule 3, 205-214 (2019). www.sciencedirect.com/science/article/pii/S2542435118304707
62. Tavakoli, M. M., Tress, W., Milić, J., Kubicki, D., Emsley, L. & Grätzel, M. Addition of Adaman-tylammonium Iodide to Hole Transport Layers Enables Highly Efficient and Electroluminescent Perov-skite Solar Cells. Energy Environ. Sci. 11, 3310-3320 (2018). pubs.rsc.org/en/content/articlelanding/2018/ee/c8ee02404a
61. Tang, Z., Wang, J., Melianas, A., Wu, Y., Kroon, R., Li, W., Ma, W., Andersson, M. R., Ma, Z., Cai, W., Tress, W.* & Inganäs, O. Relating open-circuit voltage losses to the active layer morphology and contact selectivity in organic solar cells. J. Mater. Chem. A 6, 12574–12581 (2018). pubs.rsc.org/en/content/articlelanding/2018/ta/c8ta01195h
60. Qian, D., Zheng, Z., Yao, H., Tress, W., Hopper, T. R., Chen, S., Li, S., Liu, J., Chen, S., Zhang, J., Liu, X.-K., Gao, B., Ouyang, L., Jin, Y., Pozina, G., Buyanova, I. A., Chen, W. M., Inganäs, O., Coropceanu, V., Bredas, J.-L., Yan, H., Hou, J., Zhang, F., Bakulin, A. A. & Gao, F. Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials 17, 703–709 (2018). www.nature.com/articles/s41563-018-0128-z
59. Weber, S., Hermes, I. M., Cruz, S. H. T., Gort, C., Bergmann, V. W., Gilson, L., Hagfeldt, A., Grätzel, M., Tress, W. & Berger, R. How the Formation of Interfacial Charge Causes Hysteresis in Perovskite Solar Cells. Energy Environ. Sci. 9, 2404-2413 (2018). pubs.rsc.org/en/content/articlelanding/2018/ee/c8ee01447g
58. Yavari, M., Mazloum-Ardakani, M., Gholipour, S., Tavakoli, M. M., Taghavinia, N., Hagfeldt, A. & Tress, W.* Reducing Surface Recombination by a Poly(4-vinylpyridine) Interlayer in Perovskite Solar Cells with High Open-Circuit Voltage and Efficiency. ACS Omega 3, 5038–5043 (2018). doi.org/10.1021/acsomega.8b00555
57. Saygili, Y., Turren-Cruz, S.-H., Olthof, S., Saes, B. W. H., Pehlivan, I. B., Saliba, M., Meerholz, K., Edvinsson, T., Zakeeruddin, S. M., Grätzel, M., Correa-Baena, J.-P., Hagfeldt, A., Freitag, M. & Tress, W.* Planar Perovskite Solar Cells with High Open-Circuit Voltage Containing a Supramolecular Iron Complex as Hole Transport Material Dopant. ChemPhysChem 19, 1363-1370 (2018). onlinelibrary.wiley.com/doi/abs/10.1002/cphc.201800032
56. Halvani Anaraki, E., Kermanpur, A., Mayer, M. T., Steier, L., Ahmed, T., Turren-Cruz, S.-H., Seo, J., Luo, J., Zakeeruddin, S. M., Tress, W., Edvinsson, T., Grätzel, M., Hagfeldt, A. & Correa-Baena, J.-P. Low-Temperature Nb-Doped SnO2 Electron-Selective Contact Yields over 20% Efficiency in Planar Per-ovskite Solar Cells. ACS Energy Lett. 3, 773–778 (2018). doi.org/10.1021/acsenergylett.8b00055
55. Yavari, M., Mazloum-Ardakani, M., Gholipour, S., Marinova, N., Delgado, J. L., Turren-Cruz, S.-H., Domanski, K., Taghavinia, N., Saliba, M., Grätzel, M., Hagfeldt, A. & Tress, W.* Carbon Nanoparticles in High-Performance Perovskite Solar Cells. Adv. Energy Mater. 8, 1702719 (2018). onlinelibrary.wiley.com/doi/abs/10.1002/aenm.201702719
54. Tress, W.*, Yavari, M., Domanski, K., Yadav, P., Niesen, B., Baena, J. P. C., Hagfeldt, A. & Graetzel, M. Interpretation and evolution of open-circuit voltage, recombination, ideality factor and subgap defect states during reversible light-soaking and irreversible degradation of perovskite solar cells. Energy Environ. Sci. 11, 151–165 (2018). pubs.rsc.org/en/content/articlelanding/2018/ee/c7ee02415k
53. Turren-Cruz, S.-H., Saliba, M., T. Mayer, M., Juárez-Santiesteban, H., Mathew, X., Nienhaus, L., Tress, W., P. Erodici, M., Sher, M.-J., G. Bawendi, M., Grätzel, M., Abate, A., Hagfeldt, A. & Correa-Baena, J.-P. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy & Environmental Science 11, 78–86 (2018). pubs.rsc.org/en/Content/ArticleLanding/2018/EE/C7EE02901B
52. Collavini, S., Saliba, M., Tress, W., Holzhey, P. J., Völker, S. F., Domanski, K., Turren-Cruz, S. H., Ummadisingu, A., Zakeeruddin, S. M., Hagfeldt, A., Grätzel, M. & Delgado, J. L. Poly(ethylene glycol)–[60]Fullerene-Based Materials for Perovskite Solar Cells with Improved Moisture Resistance and Re-duced Hysteresis. ChemSusChem 11, 1032–1039 (2018). onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201702265
51. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W.* Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nature Energy 3, 61–67 (2018). doi.org/10.1038/s41560-017-0060-5
50. Gholipour, S., Ali, A. M., Correa-Baena, J.-P., Turren-Cruz, S.-H., Tajabadi, F., Tress, W., Taghavinia, N., Grätzel, M., Abate, A., De Angelis, F., Gaggioli, C. A., Mosconi, E., Hagfeldt, A. & Saliba, M. Globu-larity-Selected Large Molecules for a New Generation of Multication Perovskites. Adv. Mater. 29, 1702005 (2017). onlinelibrary.wiley.com/doi/10.1002/adma.201702005/abstract
49. Ummadisingu, A., Steier, L., Seo, J.-Y., Matsui, T., Abate, A., Tress, W. & Grätzel, M. The effect of illumination on the formation of metal halide perovskite films. Nature 545, 208 (2017). www.nature.com/articles/nature22072
48. Correa-Baena, J.-P., Tress, W.*, Domanski, K., Anaraki, E. H., Turren-Cruz, S.-H., Roose, B., Boix, P. P., Grätzel, M., Saliba, M., Abate, A. & Hagfeldt, A. Identifying and suppressing interfacial recombina-tion to achieve high open-circuit voltage in perovskite solar cells. Energy Environ. Sci. 10, 1207–1212 (2017). pubs.rsc.org/en/content/articlelanding/2017/ee/c7ee00421d
47. Aitola, K., Domanski, K., Correa-Baena, J.-P., Sveinbjörnsson, K., Saliba, M., Abate, A., Grätzel, M., Kauppinen, E., Johansson, E. M. J., Tress, W., Hagfeldt, A. & Boschloo, G. High Temperature-Stable Perovskite Solar Cell Based on Low-Cost Carbon Nanotube Hole Contact. Adv. Mater. 29, 1606398 (2017). onlinelibrary.wiley.com/doi/10.1002/adma.201606398/abstract
46. Correa-Baena, J.-P., Turren-Cruz, S.-H., Tress, W., Hagfeldt, A., Aranda, C., Shooshtari, L., Bisquert, J. & Guerrero, A. Changes from Bulk to Surface Recombination Mechanisms between Pristine and Cy-cled Perovskite Solar Cells. ACS Energy Lett. 2, 681–688 (2017). dx.doi.org/10.1021/acsenergylett.7b00059
45. Domanski, K., Roose, B., Matsui, T., Saliba, M., Turren-Cruz, S.-H., Correa-Baena, J.-P., Carmona, C. R., Richardson, G., Foster, J. M., Angelis, F. D., Ball, J. M., Petrozza, A., Mine, N., Nazeeruddin, M. K., Tress, W., Grätzel, M., Steiner, U., Hagfeldt, A. & Abate, A. Migration of cations induces reversible performance losses over day/night cycling in perovskite solar cells. Energy Environ. Sci. 10, 604–613 (2017). pubs.rsc.org/en/content/articlelanding/2017/ee/c6ee03352k
44. Tress, W.*, Beyer, B., Ashari Astani, N., Gao, F., Meloni, S. & Rothlisberger, U. Extended Intermo-lecular Interactions Governing Photocurrent–Voltage Relations in Ternary Organic Solar Cells. J. Phys. Chem. Lett. 7, 3936–3944 (2016). dx.doi.org/10.1021/acs.jpclett.6b01962
43. Anaraki, E. H., Kermanpur, A., Steier, L., Domanski, K., Matsui, T., Tress, W., Saliba, M., Abate, A., Grätzel, M., Hagfeldt, A. & Correa-Baena, J.-P. Highly efficient and stable planar perovskite solar cells by solution-processed tin oxide. Energy Environ. Sci. 9, 3128–3134 (2016). pubs.rsc.org/en/content/articlelanding/2016/ee/c6ee02390h
42. Saliba, M., Matsui, T., Domanski, K., Seo, J.-Y., Ummadisingu, A., Zakeeruddin, S. M., Correa-Baena, J.-P., Tress, W., Abate, A., Hagfeldt, A. & Grätzel, M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354, 206–209 (2016). [OA] science.sciencemag.org/content/354/6309/206
41. Matsui, T., Petrikyte, I., Malinauskas, T., Domanski, K., Daskeviciene, M., Steponaitis, M., Gratia, P., Tress, W., Correa-Baena, J.-P., Abate, A., Hagfeldt, A., Grätzel, M., Nazeeruddin, M. K., Getautis, V. & Saliba, M. Additive-Free Transparent Triarylamine-Based Polymeric Hole-Transport Materials for Stable Perovskite Solar Cells. ChemSusChem 9, 2567–2571 (2016). onlinelibrary.wiley.com/doi/10.1002/cssc.201600762/abstract
40. Jacobsson, T. J., Correa-Baena, J.-P., Halvani Anaraki, E., Philippe, B., Stranks, S. D., Bouduban, M. E. F., Tress, W., Schenk, K., Teuscher, J., Moser, J.-E., Rensmo, H. & Hagfeldt, A. Unreacted PbI2 as a Double-Edged Sword for Enhancing the Performance of Perovskite Solar Cells. J. Am. Chem. Soc. 138, 10331–10343 (2016). dx.doi.org/10.1021/jacs.6b06320
39. Bergqvist, J., Tress, W., Forchheimer, D., Melianas, A., Tang, Z., Haviland, D. & Inganäs, O. New method for lateral mapping of bimolecular recombination in thin-film organic solar cells. Prog. Photo-volt: Res. Appl. 24, 1096–1108 (2016). onlinelibrary.wiley.com/doi/10.1002/pip.2770/abstract
38. Tress, W.*, Correa Baena, J. P., Saliba, M., Abate, A. & Graetzel, M. Inverted Current–Voltage Hys-teresis in Mixed Perovskite Solar Cells: Polarization, Energy Barriers, and Defect Recombination. Adv. Energy Mater. 6, 1600396 (2016). onlinelibrary.wiley.com/doi/10.1002/aenm.201600396/abstract
37. Gholipour, S., Correa-Baena, J.-P., Domanski, K., Matsui, T., Steier, L., Giordano, F., Tajabadi, F., Tress, W., Saliba, M., Abate, A., Morteza Ali, A., Taghavinia, N., Grätzel, M. & Hagfeldt, A. Highly Effi-cient and Stable Perovskite Solar Cells based on a Low-Cost Carbon Cloth. Adv. Energy Mater. 6, 1601116 (2016). onlinelibrary.wiley.com/doi/10.1002/aenm.201601116/abstract
36. Correa-Baena, J.-P., Anaya, M., Lozano, G., Tress, W., Domanski, K., Saliba, M., Matsui, T., Jacob-sson, T. J., Calvo, M. E., Abate, A., Grätzel, M., Míguez, H. & Hagfeldt, A. Unbroken Perovskite: Inter-play of Morphology, Electro-optical Properties, and Ionic Movement. Adv. Mater. 28, 5031–5037 (2016). onlinelibrary.wiley.com/doi/10.1002/adma.201600624/abstract
35. Domanski, K., Correa-Baena, J.-P., Mine, N., Nazeeruddin, M. K., Abate, A., Saliba, M., Tress, W., Hagfeldt, A. & Grätzel, M. Not All That Glitters Is Gold: Metal-Migration-Induced Degradation in Perov-skite Solar Cells. ACS Nano 10, 6306–6314 (2016). dx.doi.org/10.1021/acsnano.6b02613
34. Schwarze, M., Tress, W., Beyer, B., Gao, F., Scholz, R., Poelking, C., Ortstein, K., Günther, A. A., Kasemann, D., Andrienko, D. & Leo, K. Band structure engineering in organic semiconductors. Science 352, 1446–1449 (2016). [OA] science.sciencemag.org/content/352/6292/1446
33. Saliba, M., Matsui, T., Seo, J.-Y., Domanski, K., Correa-Baena, J.-P., Nazeeruddin, M. K., Zakeerud-din, S. M., Tress, W., Abate, A., Hagfeldt, A. & Grätzel, M. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). [OA] pubs.rsc.org/en/content/articlelanding/2016/ee/c5ee03874j
32. Jacobsson, T. J., Tress, W., Correa-Baena, J.-P., Edvinsson, T. & Hagfeldt, A. Room Temperature as a Goldilocks Environment for CH3NH3PbI3 Perovskite Solar Cells: The Importance of Temperature on Device Performance. J. Phys. Chem. C 120, 11382–11393 (2016). dx.doi.org/10.1021/acs.jpcc.6b02858
31. Arora, N., Dar, M. I., Hezam, M., Tress, W., Jacopin, G., Moehl, T., Gao, P., Aldwayyan, A. S., De-veaud, B., Grätzel, M. & Nazeeruddin, M. K. Photovoltaic and Amplified Spontaneous Emission Studies of High‐Quality Formamidinium Lead Bromide Perovskite Films. Advanced Functional Materials 26, 2846–2854 (2016). onlinelibrary.wiley.com/doi/10.1002/adfm.201504977/abstract
30. Meloni, S., Moehl, T., Tress, W., Franckevičius, M., Saliba, M., Lee, Y. H., Gao, P., Nazeeruddin, M. K., Zakeeruddin, S. M., Rothlisberger, U. & Graetzel, M. Ionic polarization-induced current-voltage hys-teresis in CH3NH3PbX3 perovskite solar cells. Nat Commun 7, 10334 (2016). [OA] www.nature.com/ncomms/2016/160208/ncomms10334/full/ncomms10334.html
29. Bi, D., Tress, W.*, Dar, M. I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Bae-na, J.-P. C., Decoppet, J.-D., Zakeeruddin, S. M., Nazeeruddin, M. K., Grätzel, M. & Hagfeldt, A. Effi-cient luminescent solar cells based on tailored mixed-cation perovskites. Science Advances 2, e1501170 (2016). [OA] advances.sciencemag.org/content/2/1/e1501170
28. Domanski, K., Tress, W.*, Moehl, T., Saliba, M., Nazeeruddin, M. K. & Graetzel, M. Working Princi-ples of Perovskite Photodetectors: Analyzing the Interplay Between Photoconductivity and Voltage-Driven Energy-Level Alignment. Advanced Functional Materials 25, 6936–6947 (2015). onlinelibrary.wiley.com/doi/10.1002/adfm.201503188/abstract
27. Baena, J. P. C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T. J., Kandada, A. R. S., Zakeeruddin, S. M., Petrozza, A., Abate, A., Nazeeruddin, M. K., Grätzel, M. & Hag-feldt, A. Highly efficient planar perovskite solar cells through band alignment engineering. Energy Envi-ron. Sci. 8, 2928–2934 (2015). [OA] pubs.rsc.org/en/content/articlelanding/2015/ee/c5ee02608c
26. Marinova, N., Tress, W.*, Humphry-Baker, R., Dar, M. I., Bojinov, V., Zakeeruddin, S. M., Nazee-ruddin, M. K. & Grätzel, M. Light Harvesting and Charge Recombination in CH3NH3PbI3 Perovskite So-lar Cells Studied by Hole Transport Layer Thickness Variation. ACS Nano 9, 4200–4209 (2015). dx.doi.org/10.1021/acsnano.5b00447
25. Gao, F., Tress, W., Wang, J. & Inganas, O. Temperature Dependence of Charge Carrier Generation in Organic Photovoltaics. Physical Review Letters 114, 128701 (2015). journals.aps.org/prl/abstract/10.1103/PhysRevLett.114.128701
24. Tang, Z., Liu, B., Melianas, A., Bergqvist, J., Tress, W., Bao, Q., Qian, D., Inganäs, O. & Zhang, F. A New Fullerene‐Free Bulk‐Heterojunction System for Efficient High‐Voltage and High‐Fill Factor Solu-tion‐Processed Organic Photovoltaics. Advanced Materials 27, 1900–1907 (2015). onlinelibrary.wiley.com/doi/10.1002/adma.201405485/full
23. Tress, W.*, Marinova, N., Moehl, T., Zakeeruddin, S. M., Nazeeruddin, M. K. & Grätzel, M. Under-standing the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perov-skite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015). pubs.rsc.org/en/content/articlelanding/2015/ee/c4ee03664f
22. Tress, W.*, Marinova, N., Inganäs, O., Nazeeruddin, M. K., Zakeeruddin, S. M. & Graetzel, M. Pre-dicting the Open-Circuit Voltage of CH3NH3PbI3 Perovskite Solar Cells Using Electroluminescence and Photovoltaic Quantum Efficiency Spectra: the Role of Radiative and Non-Radiative Recombination. Adv. Energy Mater. 5, 140812 (2015). onlinelibrary.wiley.com/doi/10.1002/aenm.201400812/abstract
21. Fischer, J., Widmer, J., Kleemann, H., Tress, W., Koerner, C., Riede, M., Vandewal, K. & Leo, K. A charge carrier transport model for donor-acceptor blend layers. Journal of Applied Physics 117, 45501 (2015). aip.scitation.org/doi/10.1063/1.4906561
20. Moule, A. J., Jung, M.-C., Rochester, C. W., Tress, W., LaGrange, D., Jacobs, I. E., Li, J., Mauger, S. A., Rail, M. D., Lin, O., Bilsky, D. J., Qi, Y., Stroeve, P., Berben, L. A. & Riede, M. Mixed interlayers at the interface between PEDOT:PSS and conjugated polymers provide charge transport control. Journal of Materials Chemistry C 3, 2664–2676 (2015). pubs.rsc.org/en/Content/ArticleLanding/2015/TC/C4TC02251C
19. Tang, Z., Tress, W., Bao, Q., Jafari, M. J., Bergqvist, J., Ederth, T., Andersson, M. R. & Inganas, O. Improving Cathodes with a Polymer Interlayer in Reversed Organic Solar Cells. Advanced Energy Mate-rials 4, 1400643 (2014). onlinelibrary.wiley.com/doi/full/10.1002/aenm.201400643
18. Fischer, J., Tress, W., Kleemann, H., Widmer, J., Leo, K. & Riede, M. Exploiting diffusion currents at Ohmic contacts for trap characterization in organic semiconductors. Organic Electronics 15, 2428–2432 (2014). www.sciencedirect.com/science/article/pii/S1566119914002560
17. Bergqvist, J., Lindqvist, C., Backe, O., Ma, Z., Tang, Z., Tress, W., Gustafsson, S., Wang, E., Olsson, E., Andersson, M. R., Inganas, O. & Muller, C. Sub-glass transition annealing enhances polymer solar cell performance. Journal of Materials Chemistry A 2, 6146–6152 (2014). pubs.rsc.org/en/Content/ArticleLanding/2014/TA/C3TA14165A
16. Widmer, J., Fischer, J., Tress, W., Leo, K. & Riede, M. Electric potential mapping by thickness varia-tion: A new method for model-free mobility determination in organic semiconductor thin films. Organ-ic Electronics 14, 3460–3471 (2013). [OA] www.sciencedirect.com/science/article/pii/S1566119913004114
15. Tang, Z., Elfwing, A., Bergqvist, J., Tress, W. & Inganas, O. Light Trapping with Dielectric Scatterers in Single- and Tandem-Junction Organic Solar Cells. Advanced Energy Materials 3, 1606–1613 (2013). onlinelibrary.wiley.com/doi/full/10.1002/aenm.201300524
14. Tress, W.* & Inganas, O. Simple experimental test to distinguish extraction and injection barriers at the electrodes of (organic) solar cells with S-shaped current-voltage characteristics. Solar Energy Mate-rials and Solar Cells 117, 599–603 (2013). www.sciencedirect.com/science/article/pii/S0927024813003607
13. Tietze, M. L., Tress, W., Pfuetzner, S., Schuenemann, C., Burtone, L., Riede, M., Leo, K., Vandewal, K., Olthof, S., Schulz, P. & Kahn, A. Correlation of open-circuit voltage and energy levels in zinc-phthalocyanine: C-60 bulk heterojunction solar cells with varied mixing ratio. Physical Review B 88, 85119 (2013). link.aps.org/doi/10.1103/PhysRevB.88.085119
12. Tress, W.*, Corvers, S., Leo, K. & Riede, M. Investigation of Driving Forces for Charge Extraction in Organic Solar Cells: Transient Photocurrent Measurements on Solar Cells Showing S-Shaped Current-Voltage Characteristics. Advanced Energy Materials 3, 873–880 (2013). onlinelibrary.wiley.com/doi/10.1002/aenm.201200931/abstract
11. Tress, W.*, Leo, K. & Riede, M. Photoconductivity as loss mechanism in organic solar cells. Physica Status Solidi-Rapid Research Letters 7, 401–405 (2013). onlinelibrary.wiley.com/doi/full/10.1002/pssr.201307039
10. Tress, W.*, Merten, A., Furno, M., Hein, M., Leo, K. & Riede, M. Correlation of Absorption Profile and Fill Factor in Organic Solar Cells: The Role of Mobility Imbalance. Advanced Energy Materials 3, 631–638 (2013). onlinelibrary.wiley.com/doi/full/10.1002/aenm.201200835
9. Tress, W.*, Leo, K. & Riede, M. Dominating recombination mechanisms in organic solar cells based on ZnPc and C-60. Applied Physics Letters 102, 163901 (2013). aip.scitation.org/doi/10.1063/1.4802276
8. Tress, W.*, Leo, K. & Riede, M. Optimum mobility, contact properties, and open-circuit voltage of organic solar cells: A drift-diffusion simulation study. Phys. Rev. B 85, 155201 (2012). link.aps.org/doi/10.1103/PhysRevB.85.155201
7. Tress, W.*, Leo, K. & Riede, M. Effect of concentration gradients in ZnPc:C-60 bulk heterojunction organic solar cells. Solar Energy Materials and Solar Cells 95, 2981–2986 (2011). www.sciencedirect.com/science/article/pii/S092702481100328X
6. Tress, W.*, Leo, K. & Riede, M. Influence of Hole-Transport Layers and Donor Materials on Open-Circuit Voltage and Shape of I-V Curves of Organic Solar Cells. Advanced Functional Materials 21, 2140–2149 (2011). onlinelibrary.wiley.com/doi/10.1002/adfm.201002669/abstract
5. Meiss, J., Hermenau, M., Tress, W., Schuenemann, C., Selzer, F., Hummert, M., Alex, J., Lackner, G., Leo, K. & Riede, M. Tetrapropyl-tetraphenyl-diindenoperylene derivative as a green absorber for high-voltage stable organic solar cells. Physical Review B 83, 165305 (2011). journals.aps.org/prb/abstract/10.1103/PhysRevB.83.165305
4. Tress, W.*, Petrich, A., Hummert, M., Hein, M., Leo, K. & Riede, M. Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Applied Physics Letters 98, 63301 (2011). aip.scitation.org/doi/10.1063/1.3553764
3. Tress, W.*, Pfuetzner, S., Leo, K. & Riede, M. Open circuit voltage and IV curve shape of ZnPc:C60 solar cells with varied mixing ratio and hole transport layer. Journal of Photonics for Energy 1, 11114 (2011). www.spiedigitallibrary.org/journals/Journal-of-Photonics-for-Energy/volume-1/issue-1/011114/Open-circuit-voltage-and-IV-curve-shape-of-ZnPc-Csub60/10.1117/1.3556726.short
2. Olthof, S., Tress, W., Meerheim, R., Luessem, B. & Leo, K. Photoelectron spectroscopy study of sys-tematically varied doping concentrations in an organic semiconductor layer using a molecular p-dopant. Journal of Applied Physics 106, 103711 (2009). aip.scitation.org/doi/10.1063/1.3259436
1. Riede, M., Mueller, T., Tress, W., Schueppel, R. & Leo, K. Small-molecule solar cells - status and per-spectives. Nanotechnology 19, 424001 (2008). iopscience.iop.org/article/10.1088/0957-4484/19/42/424001/meta

3. Monographs

Organic Solar Cells – theory, experiment, and device simulation
W. Tress, Springer Series in Materials Science 208, Springer (Dec. 2014) link.springer.com/10.1007/978-3-319-10097-5
Device Physics of Organic Solar Cells, Dissertation, TU Dresden (2012)
Weblink: nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89501

4. Peer-reviewed conference proceedings

2. Tress, W. & Graetzel, M. Understanding the limit and potential in emerging perovskite solar cells. in 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM) 15–16 (2017). doi:10.1109/EDTM.2017.7947503
1. Tress, W.*, Marinova, N., Inganas, O., Nazeeruddin, M. K., Zakeeruddin, S. M. & Graetzel, M. The role of the hole-transport layer in perovskite solar cells - reducing recombination and increasing ab-sorption. 2014 IEEE 40th Photovoltaic Specialist Conference (pvsc) 1563–1566 (2014).

5. Contributions to Books

Current-Voltage Analysis: Lessons to be Learned from Hysteresis
Unger, E., Czudek, A., Kim, H., Tress, W. in Characterization Techniques for Perovskite Solar Cell Mate-rials and Devices, Elsevier (2020)

Maximum efficiency and open-circuit voltage of perovskite solar cells
Tress, W. in Organic-Inorganic Halide Perovskite Photovoltaics, Springer (Jul. 2016) link.springer.com/chapter/10.1007/978-3-319-35114-8_3