Philip Marmet

Philip Marmet
ZHAW
School of Engineering
Forschungsschwerpunkt Multiphysics Modeling and Imaging
Technikumstrasse 71
8400 Winterthur
Persönliches Profil
Tätigkeit an der ZHAW
Wissenschaftlicher Mitarbeiter im Bereich Multiphysik und Multiskalen Simulation
Unterrichten von Analysis 1 und 2 in Bachelorstudiengängen.
www.zhaw.ch/de/engineering/institute-zentren/icp/multiphysik-modellierung/
Arbeits- und Forschungsschwerpunkte, Spezialkenntnisse
Methods:
- General: Multiphysics and Multiscale simulations of technical systems and processes. Depending on the problem, different modeling approaches are applied (e.g. analytical models, system simulation with lumped parameters, finite element and finite volume method in 1D, 2D and 3D) using own implementations as well as commercial software packages (e.g. GeoDict, Comsol Multiphysics, ANSYS, OpenFOAM, Matlab/Simulink etc.).
- Digital Microstructure Design: Workflow for a digital design and optimization of porous materials. Microstructures are virtually varied and optimized based on stochastic digital microstructure twins, which are fitted to real tomography data. The impact of the virtual microstructure variation on the device-performance is predicted with an appropriate physical model. This approach has been successfully applied for solid oxide fuel cells (SOFC) and aerosolfilters and can easily be adapted to other applications.
- Multiscale approach: Real and virtual microstructure models are characterized based on 3D geometry data in an automated way (e.g. using cloud computing). The effective properties of the microstructures are then used as an input for a continuum Multiphysics model.
- Experimental calibration and validation: Very often, modelling and simulation are used together with experimental studies in order to calibrate and validate the models and to verify the design guidelines deduced from the simulations. Thus, the appropriate design, analysis and interpretation of experiments is often an important part of a successful modeling project.
Applications:
- Fuel cells: Solid oxide fuel cells (SOFC, especially novel material concepts for nickel-free electrodes), PEM fuel cells (membrane electrode assembly modelling and water management), electrochemical impedance spectroscopy
- Aerosolfilters: Design for low pressure drop and high filter efficiency of ceramic and polymer-based filters.
- Model-based development and optimization of fluidic dosing systems including electromagnetic, piezoelectric or pneumatic actuation. Control of the dosing by integrated flow measurement. Experience with low to very high viscous fluids.
- General: Analysis, modeling and simulation of technical systems and processes in a broad range of applications. Excerpt of additional experience from successfully completed modeling projects: Drop separation for low and high viscous fluids (two-phase flow CFD simulation), Brownian dynamics simulation of colloidal suspensions, model-based development of actuators (pneumatic, electromagnetic, voice-coil, piezoelectric) with system simulations and FEM-simulations, different modeling projects for sensors (flow sensor, electromagnetic and capacitive sensors), design and optimal placing of antennas (high frequency electromagnetic simulations), dynamic behavior of a cable cars (system simulation), waste gas treatment (CFD simulation) etc.
Aus- und Fortbildung
Doktorand am Institute of Computational Physics (ICP) an der ZHAW / Universität Freiburg, Winterthur/ Freiburg, Schweiz, 2019-2023
MSc in Physics, Universität Freiburg, Freiburg, Schweiz, 2013-2016
MSc in Engineering BFH, Industrial Technologies, Berner Fachhochschule BFH, Zürich/Burgdorf, Schweiz, 2011-2013
Projektmanagement IPMA Lehrgang mit Level D Abschluss, VZPM, Bern, Schweiz, 2009
BSc / diplomierter Maschineningenieur FH, Berner Fachhochschule BFH, Burgdorf, Schweiz, 2003-2007
Beruflicher Werdegang
2023-heute: Wissenschaftlicher Mitarbeiter im Bereich Multiphysik und Multiskalen Simulation am Institute of Computational Physics (ICP) an der ZHAW.
2019-2023: Doktorand am Institute of Computational Physics (ICP) an der ZHAW im Bereich Multiphysik und Multiskalen Simulation. Hauptthema: Modelbasierte Optimierung von neuartigen Nickelfreien Anoden für Feststoffoxidbrennstoffzellen (SOFC) mit einem Fokus auf Mikrostruktur Effekte. Weitere Themen: Modelbildung und Simulation von Aerosolfiltern. Betreuung von Studentenarbeiten. Unterrichten von Analysis 1 und 2 für die Studiengänge WI und IT (2019-2021).
2017-2018: CAE-Engineer bei CADFEM (Suisse) AG im Bereich Strömungsmechanik, Elektrodynamik und Multiphysics. Consulting, Schulung und Support.
2015-2016: Wissenschaftlicher Mitarbeiter am Institute of Computational Physics (ICP) an der ZHAW, Modelbildung und Simulation von PEM-Brennstoffzellen.
2013-2014: Wissenschaftlicher Mitarbeiter am Institut iPrint der Hochschule für Technik und Architektur Freiburg.
2007-2013: Wissenschaftlicher Mitarbeiter am Institut für Drucktechnologie der Berner Fachhochschule. Modellbildung von technischen Systemen und Verfahren inklusive experimentelle Verifikation. Unterricht im Bereich Systemsimulation für den Studiengang Maschinentechnik.
Projekte
- Novel approaches for investigating local corrosion and mechanical degradation of multiphasic alloys (LoCoMecha) / Teammitglied / Projekt laufend
- GeoCloud – Simulation Software for Cloud-based Digital Microstructure Design of New Fuel Cell Materials / Teammitglied / Projekt laufend
- Versatile oxide fuel cell microstructures employing WGS active titanate anode current collectors compatible to ferritic stainless steel interconnects (VOLTA) / Teammitglied / Projekt abgeschlossen
- Designing multifunctional materials for proton exchange membrane fuel cells / Teammitglied / Projekt abgeschlossen
Publikationen
-
Marmet, Philip; Holzer, Lorenz; Hocker, Thomas; Boiger, Gernot K.; Bausinger, Holger; Mai, Andreas; Fingerle, Mathias; Reeb, Sarah; Michel, Dominik; Brader, Joseph M.,
2023.
Energy Advances.
Verfügbar unter: https://doi.org/10.1039/D3YA00132F
-
Marmet, Philip; Holzer, Lorenz; Grolig, Jan G.; Bausinger, Holger; Mai, Andreas; Brader, Joseph M.; Hocker, Thomas,
2021.
Modeling the impedance response and steady state behaviour of porous CGO-based MIEC anodes.
Physical Chemistry Chemical Physics.
23(40), S. 23042-23074.
Verfügbar unter: https://doi.org/10.1039/D1CP01962G
-
Capone, Luigino; Marmet, Philip; Holzer, Lorenz; Dujc, Jaka; Schumacher, Jürgen; Lamibrac, Adrien; Büchi, Felix; Becker, Jürgen,
2018.
Journal of Electrochemical Energy Conversion and Storage.
15(3), S. 031005.
Verfügbar unter: https://doi.org/10.1115/1.4038627
-
Dujc, Jaka; Forner-Cuenca, Antoni; Marmet, Philip; Cochet, Magali; Vetter, Roman; Schumacher, Jürgen; Boillat, Pierre,
2018.
Journal of Electrochemical Energy Conversion and Storage.
15(2).
Verfügbar unter: https://doi.org/10.1115/1.4038626
-
Holzer, Lorenz; Pecho, Omar; Schumacher, Jürgen; Marmet, Philip; Büchi, F.N.; Lamibrac, A.; Münch, B.,
2017.
Electrochimica Acta.
241, S. 414-432.
Verfügbar unter: https://doi.org/10.1016/j.electacta.2017.04.141
-
Holzer, Lorenz; Pecho, Omar; Schumacher, Jürgen; Marmet, Philip; Stenzel, Ole; Büchi, F.N.; Lamibrac, A.; Münch, B.,
2017.
Electrochimica Acta.
227, S. 419-434.
Verfügbar unter: https://doi.org/10.1016/j.electacta.2017.01.030
-
Marmet, Philip; Hocker, Thomas; Boiger, Gernot K.; Grolig, Jan G.; Bausinger, Holger; Mai, Andreas; Fingerle, Mathias; Reeb, Sarah; Brader, Joseph M.; Holzer, Lorenz,
2022.
Composite conductivity of MIEC-based SOFC anodes : implications for microstructure optimization [Paper].
In:
15th European SOFC & SOE Forum 2022, Lucerne, Switzerland, 5-8 July 2022.
Winterthur:
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-26055
-
Marmet, Philip; Hocker, Thomas; Grolig, Jan G.; Bausinger, Holger; Mai, Andreas; Brader, Joseph M.; Holzer, Lorenz,
2020.
Towards model-based optimization of CGO/Ni anodes [Paper].
In:
14th European SOFC & SOE Forum, Lucerne, Switzerland (online), 20-23 October 2020.
Zenodo.
Verfügbar unter: https://doi.org/10.5281/zenodo.4556898
-
Marmet, Philip,
2022.
Optimization of MIEC-based SOFC anodes by digital microstructure design (DMD).
In:
18th Symposium on Modeling and Experimental Validation of Electrochemical Energy Technologies (ModVal), Hohenkammer, Germany, 14-16 March 2022.
-
Marmet, Philip; Holzer, Lorenz; Hocker, Thomas; Boiger, Gernot Kurt; Hilden, Janine; Reeb, Sarah; Fingerle, Mathias,
2021.
In:
GeoDict User Meeting 2021 Book of Abstracts.
10. GeoDict User Meeting, online, 4.-8. Oktober 2021.
Kaiserslautern:
Math2Market.
S. 22.
Verfügbar unter: https://youtu.be/AIROVKq5yoc
-
Marmet, Philip; Holzer, Lorenz; Grolig, Jan G.; Mai, Andreas; Brader, Joseph M.; Hocker, Thomas,
2021.
Comprehensive model for CGO based anodes.
In:
17th Symposium on Modeling and Experimental Validation of Fuel Cells, Electrolysers and Batteries (ModVal), online, 20-22 April 2021.
-
Marmet, Philip; Capone, Luigino; Lamibrac, Adrien; Dujc, Jaka; Schumacher, Jürgen,
2016.
Ensemble-based study of equilibrium liquid water distribution in PEM gas diffusion layer.
In:
13th Symposium on Modeling and Experimental Validation of Fuel Cells, Electrolysers and Batteries, EPFL Lausanne, Switzerland, 22 March 2016.
Publikationen vor Tätigkeit an der ZHAW
P. Marmet and F. Bircher, “Multiphysics Modelling of a Micro Valve,” European Comsol Conference 2009. Comsol Multiphysics, Milan, 2009. Available from: www.comsol.com/paper/multiphysics-modelling-of-a-micro-valve-6627
P. Marmet, F. Bircher, J. Renner, P. Haslebacher, G. Schlegel, and F. Fässler, “Simulation aided design of inkjet systems,” in Advances in Printing and Media Technology, 2011, pp. 69–91.
P. Marmet, A. Scacchi, and J. M. Brader, “Shear-induced migration in colloidal suspensions,” Mol. Phys., vol. 115, no. 14, pp. 1691–1699, 2017, doi: 10.1080/00268976.2017.1323128. Available from: doi.org/10.1080/00268976.2017.1323128
Patent application: Stefan Berger, Simon Zumbrunnen, Philip Marmet, Philipp Haslebacher, Manfred Schär, Flow Sensor, patent number: PCT/EP2012/066227. Available from: patentscope.wipo.int/search/en/detail.jsf