BISTOM – Bayesian Inference with Stochastic Models
Auf einen Blick
- Projektleiter/in : Dr. Carlo Albert, Dr. Simone Ulzega
- Stellv. Projektleiter/in : Prof. Dr. Sven Hirsch
- Projektstatus : abgeschlossen
- Drittmittelgeber : Bund
- Projektpartner : Eidgenössische Anstalt für Wasserversorgung, Abwasserreinigung und Gewässerschutz eawag, Swiss Data Science Center SDSC
- Kontaktperson : Simone Ulzega
Beschreibung
In essentially all applied sciences, data-driven modeling heavily relies on a sound calibration of model parameters to measured data for making probabilistic predictions. Bayesian statistics is a consistent framework for parameter inference where knowledge about model parameters is expressed through probability distributions and updated using measured data. However, Bayesian inference with non-trivial stochastic models can become computationally extremely expensive and it is therefore hardly ever applied. In recent years, sophisticated and scalable algorithms have emerged, which have the potential of making Bayesian inference for complex stochastic models feasible, even for very large data sets. We investigate the power of both Approximate Bayesian Computation (ABC) and Hamiltonian Monte Carlo (HMC) algorithms through a case study in SOLAR PHYSICS. Time-series of cosmogenic radionuclides in wood and polar ice cores are a proxy for solar magnetic activity on multi-millennial time-scales and exhibit a number of interesting and mostly not-yet-understood features such as stable cycles, Grand Minima and intermittency. Solar physicists have put a lot of effort into the development of stochastic solar dynamo models, which need to be calibrated to the observations. Parameter inference for stochastic dynamo models on long time-series of radionuclides is an open and highly topical question in solar physics. Achieving more reliable predictions of solar activity has important implications in environmental and life sciences.
Publikationen
-
Ulzega, Simone; Albert, Carlo,
2023.
Hydrology and Earth System Sciences.
27(15), S. 2935-2950.
Verfügbar unter: https://doi.org/10.5194/hess-27-2935-2023
-
Ulzega, Simone; Albert, Carlo,
2022.
In:
EGU General Assembly 2022, Vienna, Austria, 23-27 May 2022.
Verfügbar unter: https://doi.org/10.5194/egusphere-egu22-8729
-
Albert, Carlo; Ulzega, Simone; Ozdemir, Firat; Perez-Cruz, Fernando; Mira, Antonietta,
2022.
Learning summary statistics for Bayesian inference with autoencoders.
SciPost Physics Core.
5(3), S. 043.
Verfügbar unter: https://doi.org/10.21468/SciPostPhysCore.5.3.043
-
Albert, Carlo; Ferriz-Mas, Antonio; Gaia, Filippo; Ulzega, Simone,
2021.
Can stochastic resonance explain recurrence of Grand Minima?.
The Astrophysical Journal Letters.
916(2), S. L9.
Verfügbar unter: https://doi.org/10.3847/2041-8213/ac0fd6
-
Albert, Carlo; Gaia, Filippo; Ulzega, Simone,
2020.
Can stochastic resonance explain the amplification of planetary tidal forcing?.
In:
EGU General Assembly 2020, Online, 4-8 May 2020.
Verfügbar unter: https://presentations.copernicus.org/EGU2020/EGU2020-15185_presentation.pdf
-
Albert, Carlo; Ulzega, Simone,
2020.
Stochastic resonance could explain recurrence of Grand Minima.
In:
EGU General Assembly 2020, online, 4-8 May 2020.
Verfügbar unter: https://doi.org/10.5194/egusphere-egu2020-15185
-
Ulzega, Simone; Albert, Carlo,
2019.
Bayesian inference for solar dynamo models [Poster].
In:
1st Swiss “Workshop on Machine Learning for Environmental and Geosciences” (MLEG2019), Dübendorf, 16-17 January 2019.
-
Ulzega, Simone; Albert, Carlo,
2019.
Bayesian inference methods for the calibration of stochastic dynamo models.
In:
4th Solar Dynamo Thinkshop, Rome, Italy, 25 - 26 November 2019.
-
Ulzega, Simone; Albert, Carlo,
2019.
Bayesian parameter inference with stochastic solar dynamo models [Poster].
In:
Platform for Advanced Scientific Computing (PASC19), Zurich, 12-14 June 2019.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Verfügbar unter: https://doi.org/10.21256/zhaw-3225
-
Albert, Carlo; Ulzega, Simone,
2019.
Can stochastic resonance explain the amplification of planetary tidal forcing?.
In:
4th Solar Dynamo Thinkshop, Rome, Italy, 25 - 26 November 2019.
-
Ulzega, Simone; Albert, Carlo,
2018.
Bayesian parameter inference with stochastic solar dynamo models.
In:
NDES 2018, 26th Nonlinear Dynamics of Electronic Systems Conference, Acireale, Italy, June, 11-13 2018.
-
2018.
Calibrating stochastic models for understanding solar activity.
Transfer.
2018(1), S. 8.
Verfügbar unter: https://doi.org/10.21256/zhaw-3851