DISTRAL: Industrial Process Monitoring for Injection Molding with Distributed Transfer Learning
At a glance
- Project leader : Prof. Dr. Thilo Stadelmann
- Deputy of project leader : Prof. Dr. Matthias Rosenthal
- Project team : Dr. Ahmed Abdulkadir, Paul-Philipp Luley, Simone Jana Schwizer, Damian Wildmann, Peng Yan
- Project budget : CHF 1'170'000
- Project status : completed
- Funding partner : Innosuisse (Innovationsprojekt / Projekt Nr. 62174.1 IP-ENG)
- Contact person : Thilo Stadelmann
Description
We develop a distributed machine learning system to sort out defect plastic parts during production. Main challenge is the transferability of learnt process know-how from case to case; the solution builds on domain adaptation, continual data-centric deep learning and federated edge computing.
Publications
-
Yan, Peng; Abdulkadir, Ahmed; Aguzzi, Giulia; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
In:
11th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 30-31 May 2024.
ZHAW Zürcher Hochschule für Angewandte Wissenschaften.
Available from: https://doi.org/10.21256/zhaw-30430
-
Yan, Peng; Abdulkadir, Ahmed; Luley, Paul-Philipp; Rosenthal, Matthias; Schatte, Gerrit A.; Grewe, Benjamin F.; Stadelmann, Thilo,
2024.
IEEE Access.
12, pp. 3768-3789.
Available from: https://doi.org/10.1109/ACCESS.2023.3349132
-
Luley, Paul-Philipp; Deriu, Jan Milan; Yan, Peng; Schatte, Gerrit A.; Stadelmann, Thilo,
2023.
From concept to implementation : the data-centric development process for AI in industry [paper].
In:
2023 10th IEEE Swiss Conference on Data Science (SDS).
10th IEEE Swiss Conference on Data Science (SDS), Zurich, Switzerland, 22-23 June 2023.
IEEE.
pp. 73-76.
Available from: https://doi.org/10.1109/SDS57534.2023.00017