SERAN - Self-Regenerating Anodes: Durability Improvement of SOFC Technology by Novel Smart Materials with Sulphur Tolerance

At a glance
- Project leader : Dr. Andre Heel
- Co-project leader : Dr. Dariusz Artur Burnat, Dr. Davide Ferri, Dr. Lorenz Holzer
- Deputy of project leader : Dr. Andreas Mai
- Project team : Hossein Madi, Steiger Patrick
- Project status : completed
- Funding partner : Other (Competence Center for Energy and Mobility CCEM-CH), Third party
- Project partner : Paul Scherrer Institut PSI, Ecole polytechnique fédérale de Lausanne EPFL, Hexis AG
Description
The overall aim of this consortium is the development and
demonstration of a novel sulphur tolerant catalyst, which will be
applied as catalytic active anode material in SOFCs. The here aimed
new anode catalyst has to withstand common sulphur contamination
levels of about 30 mg/m3 in natural gas fuels, while
state-of-the-art nickel catalysts in Ni/YSZ anodes suffer from
instantaneous and additionally irreversible degradation by sulphur
traces. Higher sulphur levels can be tested with respect to higher
contaminations in renewable biogas fuels. The catalysts are
examined with respect to its H2 and CO conversion performance under
SOFC anode operation conditions.
Initially, main emphasize is set on the development, evaluation and
testing of a new ceramic catalyst on the basis of B-site
substitution of titanium with nickel in lanthanum doped strontium
titanates (LST). Introduction of a second well-defined catalytic
active metallic species at the B-site will provide intrinsic
sulphur tolerance to the nickel. By this strategy the catalytic
active nickel amount willl be reduced by approximately 80% but
without minimising the catalytic performance. This ambitious aim
allows to introduce a novel self-regenerative effect, but will also
reduce cell rupture caused by mechanical stresses during nickel
oxide formation. However, still a high electronic conductivity of
about 150 S/cm has to be realized for the LST, a factor of 2 - 4
times higher than current ceramic materials.
By the use of titanate based perovskites an innovative,
self-regenerating effect can be used to limit microstructural and
catalytic degradation: redox cycling. Redox cycling – commonly
causing an unavoidable degradation of Ni/YSZ and finally a total
failure of the cell – is actively used now: it stimulates at
first the incorporation of the degraded metallic phase into the
perovskite accompanied by a total oxidation of sulphur species to
SO2, followed by segregation of a regenerated, because
nanostructured and highly dispersed, fresh catalytic active phase.
While state-of-the-art Ni/YSZ can withstand ~10 – 13 redox cycles,
it is here aimed for 30 and more redox cycles without substantial
microstructural and catalytic degradation with respect to ASR
and/or cell voltage. A non-progressive degradation by sulphur
poisoning of less than 5%/500h is aimed which can be recovered by
redox cycling.
Finally, on a cell level the complementary use of a mixed ionic
electronic conductor (MIEC) together with LST will promote an
electrochemical oxidation of sulphur species to SO2. The use of
perovskite-type LST and the modified B-site Me phase combine all
required strategies to address the following issues:
1) provide sulphur tolerance,
2) limit catalytic degradation and self-regeneration of reactive
sites which are blocked for the water gas shift reaction,
3) avoid microstructure degradation by sulphur and redox
cycling,
4) avoid the use of costly and service intensive desulphurization
cartridges, which are presently a must for the used
state-of-the-art-materials.
Publications
-
Madi, Hossein; Burnat, Dariusz Artur; Mai, Andreas; Heel, Andre; Van Herle, Jan,
2018.
LST27 anodes for SOFCs : redox stable and sulfur tolerant material [paper].
In:
Proceedings of 13th European SOFC & SOE Forum 2018.
13th European SOFC & SOE Forum 2018, Lucerne, 3-6 July 2018.
-
Burnat, Dariusz; Kontic, Roman; Holzer, Lorenz; Schuler, Andreas; Mai, Andreas; Heel, Andre,
2016.
SMART catalyst based on doped Sr-titanite for advanced SOFC anodes [paper].
In:
Proceedings of 12th European SOFC & SOE Forum 2016.
12th European SOFC & SOE Forum, Lucerne, 5-8 July 2016.
pp. 113-120.