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ABSTRACT Accurately measuring vehicle mileage is pivotal in precise CO2 emission calculations and
the development of reliable emission models. Nonetheless, mileage data gathered from surveys relying
on self-estimation, garage reports, and other estimation-based sources often yield rough approximations
that substantially deviate from the actual mileage. To tackle this issue, we present a comprehensive
framework aimed at bolstering the accuracy of CO2 emission models. This paper harnesses two innovative
techniques: the deep learning semi-supervised fuzzy C-means (SSFCM) and polynomial classifier models.
By leveraging these sophisticated mathematical techniques, we achieve successful classification of pas-
senger vehicles, enabling more precise evaluations of average mileage. Real data shows that vehicles in
Switzerland considerably exceed the estimated mileage in the years following the first registration of the
vehicle. The difference lies in the covered mileage after vehicles reach five years of age. Our framework
supports segment-based analysis for assessing average mileage and enhancing emission models for better
understanding of vehicle-related environmental impact.

INDEX TERMS Average vehiclemileage, mileagemodel, CO2 emissions, deep feature learning, polynomial
deep classifiers, vehicle classification.

I. INTRODUCTION
The adoption of the Paris agreement over 8 years ago [1],
which aimed to mitigate global warming to a level below
1.5◦C, has not yielded favorable results. Global greenhouse
gas emissions persistently continue to rise, which is a cause
for concern. The 2016 EU Reference Scenario indicates that
without a determined commitment to decarbonization, carbon
dioxide (CO2) emissions from transportation are forecasted to
experience a modest reduction of only 8% between 2010 and
2050, ultimately peaking by 2050 [2], [3]. Various factors
contribute to this feeble progress, including a significant
proliferation of passenger cars, sluggish uptake of electric
vehicles, and a restricted transition to alternative fuels. These
factors hinder progress and impede the substantial mitigation
of emissions.

According to the International Energy Agency [4],
Switzerland’s contribution to global anthropogenic CO2
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emissions from fossil fuels is less than 0.2%. However, the
transportation sector has a substantial impact on Switzer-
land’s overall carbon footprint, constituting around 30.6%
of the nation’s CO2 emissions in the year 2021. Among the
various transportationmodes, road transport is predominantly
responsible, accounting for 97.3% of these emissions. Pas-
senger cars, specifically, constitute a significant portion of
Swiss road transport emissions, making up approximately
71.2% of the total emissions [5]. It is worth noting that the
normative CO2 emissions from passenger cars in Switzerland
have displayed a fluctuating pattern. After experiencing a
continuous decline since 2003 for both gasoline and diesel
vehicles, the normative CO2 emissions witnessed a slight
increase in 2017 due to the partial introduction of the
new WLTP normative measurement procedure for European
type approval and a significant rise in 2021 due to its full
introduction. While the introduction of the new normative
CO2 measurement procedure had a significant impact on
the normative CO2 emissions, no impact on the CO2 emis-
sions on the road are expected; however, the difference
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between normative and real CO2 emissions could be reduced
significantly [6]. Estimating CO2 emissions involves employ-
ing calculation models that heavily rely on factors such as
the vehicle fleet composition, fuel parameters, and average
mileage of the vehicles [7], [8], [9], [10].

Due to the lack of standardization in estimating vehicle
mileage, which varies greatly between periodic technical
inspections (PTI), garage reports, and individual estimations,
accurately determining the true CO2 emissions from road
traffic has become increasingly challenging and unreliable.
Additionally, the implementation of new carbon dioxide
legislation, which includes an EU fleet average normative
emission target of 95 g CO2/km according to the old mea-
surement procedure, has resulted in significant changes in
new immatriculated vehicle fleet composition, as well as the
technical and dimensional characteristics of vehicles over
time [11]. Despite advancements in technology and measures
such as purchasing new vehicles and scrapping old or dam-
aged ones, Swiss passenger car fleet continues to have high
CO2 emissions. Therefore, understanding the relationship
between estimated and actual mileage of passenger cars and
the impact of these differences on CO2 emissions is of utmost
importance in achieving the goal of zero net CO2 emissions
by 2050.

Hence, this study aims to develop a mathematical model
to calculate average vehicle mileage for different vehicle
segments, thereby improving the accuracy of CO2 emissions
calculations. Given the limited informative value of CO2 stan-
dard values for real emissions, this approach represents an
important step towards a new CO2 assessment of road traffic.
The study builds upon previous work focused on developing
a machine learning methodology for the segmentation of pas-
senger cars based on technical and dimensional features [12],
[13], [14]. Fig. 1 illustrates the core challenge of vehicle
segmentation in this context.

Our primary objective was to enhance the accuracy of CO2
emission calculations and gain a deeper understanding of the
impact of variations in vehicle class on the CO2 footprint
of passenger vehicle fleets. To achieve this, we employed
a meticulous approach by categorizing passenger vehicles
based on their technical and dimensional characteristics [14].
This segmentation allowed for better analysis of the intricate
variations within each class (intra-class) as well as compar-
isons between different classes (inter-class). By doing so,
we aimed to comprehend the diverse factors influencing the
calculation of accurate average vehicle mileage across the
passenger vehicle fleet. In our approach, we conducted a com-
parative analysis of various semi-supervised clustering algo-
rithms to predict labels obtained from unsupervised cluster-
ing algorithms. Our focus was on utilizing a feature learning
technique, which effectively learns representations in datasets
with high dimensionality and significant uncertainties [15],
[16], [17], [18], [19], [20], [21], [22], [23]. Additionally, our
research aimed to develop a model for calculating average
vehicle mileage for both inter-class and intra-class scenarios,

thereby improving the accuracy of CO2 emission calculations
and understanding the impact of vehicle class variations on
the CO2 footprint of passenger vehicle fleets [9]. Ultimately,
this study serves a greater purpose by facilitating a better
understanding of the impact vehicle class variations have on
the overall CO2 footprint of passenger vehicle fleets. With
more precise calculations and deeper insights, we can drive
advancements toward reducing emissions.

Section II briefly introduces the Swiss motor vehicles
system. Section III presents the related research. Section IV
describes the methods. Section V provides concise details on
the used datasets, the algorithms, the performed experiments
and the discussion of the results and last, section VI provides
the majors findings of our work and recommendations for
further research.

II. SWISS MOTOR VEHICLES AND CO2 EMISSIONS
Switzerland registered over 6.6 million motor vehicles in
2023. Out of these, more than 4.7 million were passenger
cars. On average, these vehicles are used for nine years.
Despite a high rate of the population accepting public trans-
port modes (59%), car travel still accounts for two thirds
of the total passenger kilometers [24]. In 2023, the collec-
tive distance covered annually by these vehicles amounts
to 55 billion kilometers, with an average daily distance of
20.8 kilometers. As reported by the Federal Office for Spatial
Development, this is equivalent to a rate of 100,000 kilome-
ters per minute. [25]. Switzerland records vehicle odometer
readings during periodic technical inspections (PTI). New
cars undergo their first PTI after 5 years, followed by a
second test for cars after three more years. Subsequent tests
are required every two years. The cantonal road traffic office
in Switzerland manages and standardizes PTIs, maintain-
ing an extensive vehicle database with odometer readings.
Additionally, there was a consistent decline in the average
normative CO2 emissions for newly registered cars, dropping
from around 190 g CO2/km in 2003 to approximately 134 g
CO2/km in 2016. However, the mean CO2 emissions of new
registrations saw an increase, reaching 137.8 g CO2/km in
2018. By 2022, the average CO2 emissions of all new cars
were approximately 120.9 g CO2/km, indicating a decrease
of around 9 grams compared to 2021. Despite this reduc-
tion, the specified target value of 118 g CO2/km (measured
using theworld harmonized light-duty vehicles test procedure
(WLTP)) that came into effect in 2022 was not fully achieved.
This outcome is primarily attributed to the implementation
of the new WLTP measurement method. A real-world factor
of 1.4 was applied to NEDC-based CO2 emissions, while a
factor of 1.2 was utilized for WLTP-based CO2 emissions.
During the intermediate period, the factor used was 1.3.

Fig. 2 depicts the monthly progress of CO2 emissions
from newly registered cars between 2012 and 2022. The
transition from new European driving cycle (NEDC) to
the more accurate WLTP measurement method resulted in
higher recorded average CO2 emissions from new vehicles.
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FIGURE 1. Characterizing vehicle fleet composition structure-type data input framework. Internal combustion engine (ICE), mild hybrid electric
vehicle (MHEV), full hybrid electric vehicle (HEV), plug-in hybrid electric vehicle (PHEV), battery electric vehicle (BEV), fuel cell electric vehicle
(FCEV), new European driving cycle (NEDC) and world harmonized light-duty vehicles test procedure (WLTP).

To prevent a sudden and drastic tightening of the CO2 target,
adjustments were made to align the CO2 target value with
the EU standards [26]. While road traffic in Switzerland has
previously operated on its own energy system, which was
relatively simple to evaluate in terms of CO2 emissions, the
growing adoption of electric vehicles will complicate the
differentiation between energy consumption from road traffic
and other stationary energy sources. The development of a
precise mathematical methodology to accurately estimate the
mileage of passenger vehicles is crucial for determining the
actual CO2 emissions from road traffic in the future.

III. RELATED WORK
Over the last decades, despite achieving partial success in
meeting the normative CO2 emission targets, actual CO2
emissions in real-world conditions have only experienced
a modest decrease of approximately 10% [27]. However,
a notable difference of 42% now exists between the estimated
and real-world emissions, resulting in a significant discrep-
ancy of 31 g CO2/km in supposedly saved emissions [28],
[29]. One crucial aspect in accurately calculating emissions
is determining the average mileage of vehicles, which can
be challenging to obtain precise values for or often rely on
estimations. Researchers implemented advanced simulation
programs to construct comprehensive emission inventories,

enhancing the accuracy and reliability of their findings [30],
[31], [32], [33], [34], [35], [36]. Simulation programs play
a crucial role in bridging the gap between the two pri-
mary estimation techniques. Top-down approaches focus on
market dynamics, such as fuel consumption patterns and
economic factors, to estimate CO2 emissions on a broader
scale. Conversely, bottom-up approaches concentrate on intri-
cate technological details, taking into account factors such
as vehicle class, vehicle mileage, and engine efficiency.
By employing simulation programs, researchers are able to
integrate these complex factors and interactions, specifically
in the case of vehicle class and average mileage of vehicle,
leading to more precise estimates of CO2 emissions. These
programs simulate real-world scenarios and consider a wide
range of parameters, enabling a comprehensive assessment of
the environmental impact of different activities and technolo-
gies. Consequently, the compilation of emission inventories
becomes more reliable and comprehensive. Simulations also
prove particularly valuable in compensating for the limita-
tions of laboratory test methods. Traditional lab tests are
conducted under controlled conditions, which may not fully
capture the diverse and dynamic factors that influence real-
world emissions. In contrast, simulation programs enable
more realistic and dynamic simulations by considering a
broader range of variables and scenarios.
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FIGURE 2. Monthly normative CO2 emissions 2012-2022. Data source: ASTRA (IVZ/TARGA), BFE (CO2
enforcement data).

Jimenez et al. [37] conducted a review focusing on the
influence of vehicle classification, vehicle characteristics,
vehicle brand, and registration year on real-world CO2
emissions. The researchers utilized a database consisting of
650 passenger cars. Their study aimed to elucidate how these
factors contribute to the disparity between real-world emis-
sions and type-approval emission values. Hiselius et al. [38]
suggested targeting CO2 emission reduction in the upper
quintiles to have a more significant impact compared to
uniform reductions across all quintiles. However, eliminating
passenger mileage in the sustainable category contributes
only minimally to achieving the required one-third reduction.
Pejić et al. [39] devised a model that utilizes the age of
vehicles and their population size to determine the average
mileage. The model assumes an annual reduction in mileage
of 5% for passenger cars and small delivery vehicles, 5% for
medium trucks, 9.1% for large trucks, and 9% for buses.

However, limitations exist in simulation techniques when
it comes to considering variations in emissions within vehicle
classes and conducting detailed analyses. Feature learn-
ing techniques show promise in addressing uncertainties
and improving classification but have been underutilized
in predicting vehicle CO2 emissions on high-dimensional
datasets [40], [41]. Ghahramani and Pilla [42] employed a
combination of deep learning and support vector machine
(SVM)model to forecast CO2 emissions through energy con-
sumption and mileage monitoring. The model demonstrated
a high level of accuracy in its predictions, as evidenced by
the low value of the Root Mean Square Error. Pei et al. [43]
introduced a method to estimate emissions and mileage using
driving cycle data. Their approach incorporates temporal fea-
tures and a clustering method, leading to improved accuracy.
The proposed driving cycle construction technique eliminates
the need for manual parameters and is evaluated using visu-
alizations and the COPERT emission model. Experimental
results demonstrate significant enhancements in accuracy and
robustness. Chrysos et al. [44] provided a principled approach
to study state-of-the-art classifiers as polynomial expan-
sions. The research highlighted the prevalence of polynomial

functions in various classifiers and elucidated their under-
lying design principles within a unified framework. The
suggested framework can be applied to compress models or
enhance model performance.

In this research, our primary aim was to address the
challenges posed by diverse methodologies used to esti-
mate average mileage and CO2 emissions. To achieve this,
we developed simulation programs with the goal of enhanc-
ing the accuracy of emission estimations. Among the various
simulation-based approaches, we utilized a combination of
feature extraction methods and deep learning techniques.
This approach proved effective in overcoming the limitations
associated with conventional laboratory test methods and
significantly improving the accuracy of emission models.

IV. MATERIALS AND METHODS
A. SEMI-SUPERVISED CLUSTERING
Semi-supervised clustering endeavors to optimize cluster
accuracy by identifying superior clusters in comparison
to those obtained through unsupervised learning algo-
rithms [18], [45], [46], [47]. Traditionally, semi-supervised
clustering techniques yield subpar results when represented
in the original feature space. To enhance the effectiveness
of semi-supervised clustering, integrating deep feature learn-
ing [15], [48], [49], [50] is rational. The framework of the
suggested clustering approach is depicted in Fig. 3.

In contrast to commonly employed methodologies in
semi-supervised clustering that rely on feature extraction
techniques, our approach integrates three different types
of information (diffusion labels, extracted core data, and
extracted feature vectors) in order to improve classification
accuracy and tackle challenges such as imbalanced class
distribution and overlapping among multiple classes.

Our proposed framework includes four primary layers,
where the first three layers have been previously discussed
in a prior study [14]. In the initial layer, we partition the
labeled data into separate training and testing sets which are
used for constructing and evaluating classifiers, respectively.
In the second layer, the training set is utilized along with
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FIGURE 3. The structure of the proposed semi-supervised deep learning and Polynomial regression approach.

unlabeled data as input for the feature learning process.
The output of this step yields cluster centroids, which serve
as a basis for projecting data from both the training and
testing sets into a newly learned space. Furthermore, this
projection allows for the extraction of feature vectors during
the subsequent feature extraction step. In the classification
step, we construct AdaBoost [51], Random Forest [52], and
semi-supervised fuzzy C-means clustering (SSFCM) models
using the feature vectors derived from the training set. These
models are then utilized to predict labels for the correspond-
ing feature vectors within the testing set. The third layer
involves the comparison of performance parameters among
the three individual models and a fusion model, with the aim
of evaluating their effectiveness in terms of data classification
and prediction. Lastly, the experimental outcomes from the
third layer are applied to a dataset concerning used cars.
In this context, we independently employ the polynomial
regression algorithm for each vehicle class, with the objective
of establishing a model that accurately calculates the average
mileage of a vehicle belonging to a specific class. To validate

the coefficients obtained from the experimental model, a rep-
resentative subset is randomly selected from each class and
compared with a real dataset corresponding to the given year.

B. SEMI-SUPERVISED FUZZY C-MEAN CLUSTERING
A semi supervised fuzzy C-means clustering incorporates
deep feature learning to further improve its effectiveness and
eliminate redundant information [21], [46], [53]. Let uki be
a weighted squared errors function known as membership
function and can be defined as follow:

uki =
1∑C

j=1

(
DkiA
DkjA

)2/(m−1) (1)

where C is the number of clusters; m is a weighting exponent
that determines the degree of fuzziness and that was set to 2 in
order to ensure high membership values for each data point
to its closest cluster; A is a positive and symmetric (n × n)
weight matrix. The calculation for the updated cluster center
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is as follows:

vi =

∑N
k=1 u

m
kiXk∑N

k=1 u
m
ki

(2)

This method aims to minimize the objective function (J) as
follows:

Min J (X;U ,V ) =

∑N

k=1

∑C

i=1
umki ∥Xk − vi∥

2
A

(1 ≤ m < ∞) (3)

s.t.
∑c

i=1
uki = 1 (0 ≤ uki ≤ 1) (4)

where N is number of data elements, Xk represents the data k
of X = {X1,X2,X3,. . . ,XN} in the ith cluster; U is the fuzzy
partition matrix of the dataset X into c cluster; vi is vectors of
center in ith cluster; K denotes the features, and ∥xk − vi∥2A
denotes to the Euclidean distance function and it is computed
in the A norm between jth data and ith cluster center.

C. STEPS OF DEEP SEMI-SUPERVISED FUZZY C-MEAN
CLUSTERING ALGORITHMS
The SSFCM algorithm comprises the following steps:

Algorithm 1Membership and Centroid of FCM
Input:N data elements X= {X1, X2,. . . ,XN}, weight matrix
(A), number of clusters (C), degree of fuzziness (m=2), max
iteration number (T), error threshold (ε)
Output: uki, vi
Set t = 0
1. Initialize centroid vectors vi
2. Update t = t + 1
3. Calculate membership degrees uki
4. Calculate updated centroid vectors vi
5. Until ||ut − ut−1|| < ε is satisfied, then stop
6. Otherwise repeat from step 3.

Subsequently, algorithm 2 is employed to compute the
memberships and centroids of deep FCM.

Algorithm 2 Training Strategies for Deep FCM
Input: N data elements X= {X1, X2,. . . ,XN}, number of
clusters (C), clusters feature (K ), labeled dataset (L), unla-
beled dataset (UN), membership degree (U ), max iteration
number (T ), error threshold (ε)
Output: uiL , uiUNL , vkiL , v

k
iUNL

Set t = 0
1. Initialize vki (random for labeled data)
2. Update t = t + 1

a) Calculate uiL , uiUNL
b) Calculate vk+1

iL , vk+1
iUNL

c) If the stopping criterion, until ||Jt − Jt−1|| < ε,is
fulfilled for all labeled and unlabeled objective
functions, then stop

3. Otherwise repeat from step 2

Then, employing algorithm 3, we select the features (s⊂K)
through the utilization of the random oversampling (ROS)

technique. The aim of employing the ROS technique is to
maintain a balance between the feature subsets of labeled
classes and unlabeled data elements [14].

Algorithm 3 Feature Extraction of Deep FCM
Input: N data elements X = {X1, X2,. . . ,XN}, clusters fea-
ture (K ), labeled dataset (XL), unlabeled dataset (XUNL),
µ (D) mean of the elements of D, set of the centroids (vkiL ,
vkiUNL)
Output: Set of extract features of labeled and unlabeled
dataset
Set Q = ∅

1. Calculate DLk =
∥∥xiL − vkiL

∥∥
2. Calculate DUNLk =

∥∥xiUNL − vkiUNL
∥∥

3. Calculate means DLk&DUNLk of elements
µi (DiL) , µi (DiUNL)
4. feature extraction (fk (x) = max(0, µ (D) − Dk )

a) for all L and UNL features do
5. Return the set Q

In the following step, we utilize the Euclidean distance
technique, which is widely used as a metric to measure
similarity or distance between labeled and unlabeled feature
vectors. The result is determined by finding the maximum
average of the maximum relevant and minimum redundant
features between each selected feature of unlabeled data and
labeled classes:

max Simi(Xj,V s
L) = min djiL = min

∣∣Xj − V s
iL

∣∣
(1 ≤ i ≤ c),XjϵXUNL (5)

Finally, in algorithm 4 the maximum average of the max-
imum similarity between the selected features are estimated,
which is then utilized in the classifiers.

Algorithm 4 SSFCM Classifier
Input: N data elements X={X1,X2,. . . ,XN} with minimum
features in any subset (s), set of the centroid (V s

iL ,V
s
UNL) of

selected features
Output: Predicted labeled data (Q= {qL+1, qL+2,. . . , qL+N })
Set Q = ∅

1. For each centroid index i ϵ {1, . . . , c} do
2. For each data element index j ϵ {1, . . . , N}, do the following
steps:

a) Employ V s
iL to calculate max Simi

b) If maximum average of max Simiϵ ith labeled class,
then

c) Append Xj to ith labeled class
d) Update the set Q if a labeled class is achieved
e) For all V s

iLϵV
s
L do

3. Return the set Q

D. STATE-OF-THE-ART METHODS
To improve the accuracy and performance of classification,
two ensemble learning methods, namely Random Forest and

VOLUME 12, 2024 17409



N. Niroomand, C. Bach: Estimating Average Vehicle Mileage for Various Vehicle Classes

AdaBoost, are utilized [54], [55]. The Random Forest tech-
nique employs parallel learning and utilizes bagging for data
training. Its purpose is to minimize variance and bias in
the model by creating multiple decision trees (sets) from
the original data. Importantly, in the parallel process, these
decision trees are independent of one another.

Algorithm 5 Random Forests Classifier
Input: Training set (S), number of decision trees in the forest
(B), subsample size (µ), maximum iteration number (T)
Output: Set K = ∅

1. Initialize the iteration number t ϵ {1, . . . , T} do
2. For each decision tree index b ϵ {1, . . . , B} do the following
steps:

a) Sample µ instances from S with replacement,
creating a subsample set St

b) construct a decision tree Kt using decision tree b on the
subsample set St

c) Add the trained decision tree classifier Kt to set K
3. Return the set K

Conversely, AdaBoost functions as a sequential learning
approach that builds decision stumps based on the train-
ing data. Each subsequent decision stump in this sequential
process depends on the previous one. Specifically, any errors
made by the initial decision stump, such as misclassify-
ing a few datasets, impact the subsequent decision stump
by assigning higher weights to those particular training
data.

Algorithm 6 AdaBoost Classifier
Input: Data X whose number of elements N, training set (S),
decision tree in forest (B), subsample size (µ), max iteration
number (T)
1. Initialize data weights {Dn} to 1/N
2. for t ϵ {1, . . . , T} do
a) find best weak classifier ym(x) by minimizing
weighted error function Jm:
Jm =

∑N
n=1D

(m)
n 1[ym (xn) ̸= tn]

b) compute
errm =

∑N
n=1D

(m)
n 1 [ym (xn) ̸= tn] /

∑N
n=1D

(m)
n

c) assign weight αm = log( 1−εm
εm

) to classifier ym(x)
d) update the data weights:

D(m+1)
n = D(m)

n exp {αm1 [ym (xn) ̸= tn]}
e) Normalize D(m+1)

n to be proper distribution
Output:Make prediction using the final model:

YM (x) = sign(
∑M

m=1 αmym(x))

E. PERFORMANCE MEASURE
To evaluate the effectiveness of the various algorithms,
we analyze the confusion matrix to calculate metrics. These
metrics are used to assess the performance of the algorithms
and are outlined below:

F. MODEL FUSION
The Model fusion method is a deep learning technique that
combines multiple classification predictive models with indi-
vidual weights to improve the final estimation. This approach
serves as a more robust meta-classifier by leveraging a
majority voting classifier estimator, which helps overcome
the limitations of individual classifiers and results in higher
classification accuracy. The two commonly used types of
voting classifiers are the hard voting classifier and soft voting
classifier. The hard voting classifier determines the majority
vote by giving equal weights to each classifier (selecting the
mode of all predicted labels), while the soft voting classifier
calculates the majority vote by assigning different weights to
each classifier (considering the probability of all predicted
labels). The predictions of the voting classifier can be defined
as:

Hvote(x) = max
{∑

j
lab (x, j, 1) , . . . ,

∑
j
lab (x, j, c)

}
(1 ≤ j ≤ T )(1 ≤ c ≤ K ) (6)

Svote(x)

= max
{∑

i p (x, j, 1)
nT

,

∑
i p (x, j, 2)

nT
, . . . ,

∑
i p (x, j, c)
nT

}
(7)

where Hvote(x) represent the outcome of the hard voting pro-
cess. The function lab (x, j, c) acts as an indicator, determining
whether x belongs to the label c as calculated by the jth clas-
sifier, Svote(x) represents the result of the soft voting process.
The probability p (x, j, c) is associated with the likelihood of
the jth classifier surpassing certain threshold values. Here, nT
denotes the total number of classifiers, while k signifies the
number of labels.

G. POLYNOMIALS AND DEEP CLASSIFIERS
Polynomials are mathematical expressions that establish a
connection between an input variable and coefficients. In the
context of regression analysis, polynomial regression is
employed to handle data that deviates from the assumptions

17410 VOLUME 12, 2024



N. Niroomand, C. Bach: Estimating Average Vehicle Mileage for Various Vehicle Classes

of basic models [57], [58]. When combined with ensem-
ble methods, polynomial regression can improve the overall
model’s generalization performance. This combination has
the potential to decrease both bias and variance, resulting in
improved predictions for unseen data. A principled approach
is adopted to investigate advanced classifiers as polynomial
expansions. It is observed that polynomials play a recurring
role in various classifiers, and their design choices can be
interpreted under a unified framework. Building upon exist-
ing methods, we introduce extensions that lead to enhanced
classification accuracy. Specifically, we represent state-of-
the-art ensemble learning methods as polynomials, allowing
us to gain insights into the inductive bias of each vehicle
class. This allows for evaluating performance under different
changes in the training distribution, such as limited samples
per class or a long-tailed distribution.

Algorithm 7 Third-Degree Polynomials
Input: Data X whose number of elements N, training set (S),
polynomial coefficients (C), degree of polynomial (t)
Output:
1. Set t = 3
2. Update t = t - 1
2. Initialize data weights W[n]

3. 8[t]
iL (X) = CXiL , 8

[t−1]
iL (X) = CXiL , 8

[t−2]
iL (X) = CXiL

4. YSt = (8[t]
iL (X) 8

[t−1]
iL (X ))8[t−2]

iL (X ) + β

5. Y =
∑N

n=1 (w
[n]8t

iL ∗ Xi) + β

V. EXPERIMENTS
A. DATA PREPARATION
In this study, the primary dataset is the Swiss Motor Vehicle
Information System (MOFIS) [59]. It contains informa-
tion about more than 4.7 million passenger vehicles. This
information includes various details such as type approval
numbers, physical characteristics, weight properties, own-
ership information, technical specifications, and registration
dates. Additionally, we have also incorporated data on vehicle
technical specifications and periodic technical inspections
from the Technical Type Approval Information provided by
the Federal Roads Office (ASTRA) [60] and the Vehicles
Expert Partner [61] respectively.
To align with the goal of the paper, we divided the dataset

into two parts: a training set and a testing set. The training

set consisted of 308,824 newly registered passenger cars in
2018. Initially, a filtering process was applied to remove
vehicles that didn’t fit the conventional definitions of pas-
senger cars, such as small pickup trucks, standard pickup
trucks, vans, special purpose vehicles (SPVs), sports cars,
and multi-purpose vehicles (MPVs). These cars were then
categorized into various types based on their make, model,
and manufacturer code, resulting in 366 unique passenger car
types. These types were further classified into classes: 18 in
the micro class, 50 in the small class, 110 in the middle class,
84 in the upper middle class, and 104 in the large class and
luxury class. Due to limitations of the unsupervised FCM
clustering algorithm, only labeled data with true labels and
a membership degree higher than 0.95 were used as the core
dataset. This core dataset was utilized to extract accurate
classifications and serve as the foundation for subsequent
training steps. Furthermore, 10% of the data from each class
was randomly selected as training labeled samples. Lastly,
the used cars dataset [62], consisting of 1,880,417 entries,
was utilized. This comprehensive dataset contains essential
information about the mileage covered by each car and their
estimated age. Its purpose is to facilitate precise predictions
concerning the mileage associated with different passenger
car types.

B. EXPERIMENTAL SETUP AND RESULTS
The initial analysis revealed a strong correlation between
emissions, vehicle segments, sub-segments, and influenc-
ing factors. To process the data, a combination of labeled
and unlabeled data was used, along with the core dataset,
and principal component analysis was applied to address
multicollinearity. New features were extracted to reduce the
number of features, and a selection process involving resam-
pling and Euclidean distance was used to identify the best
features (algorithm 2-4). Pseudo labels were assigned to
unlabeled data for pre-training different classification algo-
rithms (algorithm 5-6). Model fusion was performed using
labeled data to improve accuracy. The results indicated that
the soft voting fusion model and SSFCM algorithm achieved
the highest accuracy (Table 1). The final features extracted
from the model fusion were used to re-evaluate the single
algorithms and select the ultimate classification model. These
experimental results demonstrate that the SSFCM algorithm
is capable of extracting more valuable information from the

TABLE 1. Evaluation of model performance on a dataset with labeled rate of 10% from each class.
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TABLE 2. Inter-class and intra-class classification of passenger cars using SSFCM in the year 2018.

TABLE 3. Accuracy of polynomial model coefficients validated on 10% randomly chosen SSFCM labeled samples within the vehicle classes.

vehicle dataset, resulting in improved recognition rates com-
pared to other classifiers.

The underlying assumption of feature extraction is that
it leads to improved classification results in comparison to
the initial classifier’s predictions with the original features.
In algorithm 7, particularly during the Polynomial features
selection step, the inter-class and intra-class classification

results obtained from the SSFCM approach are employed on
used cars dataset. These results encompass a total of five
classes, each accompanied by their respective sub-classes,
as described in Table 2.

The extraction of average mileage data has been conducted
specifically for used cars within the age range of up to
20 years, focusing on data obtained in the year 2018. Further-
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FIGURE 4. Overall comparison of inter-class differences (Boxplots A and B) and mileage-age relationship in
each segment (Boxplot C).

FIGURE 5. SSFCM classifier and polynomial regression performed on
each segment.

more, in-depth analysis of the dataset from the year 2015 has
been carried out to examine the average mileage data for each
vehicle class. Additionally, the dataset has been expanded
to include sport cars and MPVs. As a result, there are now
seven distinct car segments available for mileage analysis.
Rigorous data quality checks are performed to eliminate
mileage records with unrealistic values, such as zero mileage
or a negative mileage difference between consecutive years
for a given vehicle. In Fig. 4, an encompassing comparison
of inter-class differences is depicted by employing the uti-
lization of boxplots. Furthermore, it offers a comprehensive
overview of the relationship between mileage and age within
each distinct class.

Following data refinement, a third-degree polynomial anal-
ysis is conducted on the average mileage and age data,
Fig. 5. This analysis takes into consideration the life cycle
pattern of vehicles, where the highest annual mileage is
typically observed at the initial stage, followed by a period
of stabilization and gradual decline. Consequently, the uti-
lization of a third-degree polynomial analysis provides a
more accurate representation of the actual vehicle operation.
To validate the coefficients obtained from the resulting
model, a stratified sampling approach is employed based
on the number of unique vehicles in some intra-classes.
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FIGURE 6. Applying a polynomial regression of the third order for each vehicle segment, along with 10% sample of average mileage in some
intra-classes as well as the average mileage for the year 2015.
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FIGURE 6. (Continued.) Applying a polynomial regression of the third order for each vehicle segment, along with 10% sample of average mileage in
some intra-classes as well as the average mileage for the year 2015.

Specifically, 10% of the data from each class is randomly
selected as training labeled samples from SSFCM classifiers,
representing their respective classes Fig. 6. Finally, the result-
ing model is compared to an existing one from 2015 for
evaluation and comparison purposes as presented in Table 3.

C. DISCUSSIONS
The experiment results have demonstrated that there is a
significant decrease in the overall fleet size for each vehicle
class within the age range of up to three years. This reduction
in fleet size can be attributed to the ongoing scarcity of used
cars that are specifically three years old or younger. These
vehicles are consistently 17% less available compared to
other age ranges that have slightly higher supply. However,
it is important to note that despite this decline in fleet size,
the average age of passenger cars in Switzerland has con-
tinued to increase throughout the study period. Specifically,
the average age of passenger cars has risen from 9 years in
2018 to 9.3 years by the end of 2021. This upward trend
suggests that older vehicles are remaining in use for longer
periods of time. It could also indicate a growing interest
in electric vehicles among some individuals. Furthermore,

FIGURE 7. Comparison of actual average mileage and estimated values.

based on observations, a newly purchased vehicle was found
to cover an average distance of 17,935 km annually. How-
ever, after 5 years, this annual distance reduced by 25%, and
after 10 years, it decreased by 40%. Despite the majority of
passenger kilometers being covered by cars in Switzerland,
there is a notable variation in mileage between rural and
urban areas, particularly for older vehicles. For instance, 10-
year-old vehicles in cities travel approximately 20% fewer
kilometers on average compared to their rural counterparts.

The distribution of mileage in various segments tends to
shift towards higher values. The range of driving performance
is also quite extensive, with some vehicles only traveling a
few thousand kilometers per year, while others cover several
tens of thousands of kilometers. Moreover, the mileage of
vehicles is not constant throughout their lifespan. It generally
decreases over time, although the decrease is not linear during
the first ten years but becomes more linear thereafter. Across
all segments, the mileage is halved over a span of 20 years.
To estimate the average mileage, we considered the entire
operational period. We used a polynomial model that takes
into account the vehicle age and population size as input
features for each vehicle class. Experimental results demon-
strate discrepancies between the estimated data and the actual
vehicle data. However, we validated the model by comparing
it with the actual data for 2015, as shown in Fig. 7. It is worth
noting that the difference mainly arises in the accumulated
mileage after vehicles reach five years of age, indicating that
used cars generally accumulate more mileage than initially
predicted. This underscores the significance of updating the
model coefficients every three to five years, leading to rec-
ommendations for regular updates. Furthermore, the accuracy
of the chosen model coefficients was validated by applying
them to a randomly selected sample from within the vehicle
class. This test demonstrated their applicability and relia-
bility. Additionally, except for sports cars, we observed a
strong positive correlation (R2 > 0.90) between the proposed
estimated mileage and the data provided by the federal vehi-
cle control authority for all vehicle classes. Hence, we used
distinct approaches to assess the mileage in both cases, and
the results exhibit a high level of correlation.
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FIGURE 8. Distribution of mileage within selected passenger car segments. Additionally, a 10%
sample of average mileage in specific intra-classes is included. Boxplot representation with
median and 25/75% quartiles and mean (×) of the mileage of the passenger car segments.

Our previous findings indicated significant variations in
average CO2 emissions among different vehicle classes [14].
This underscores the importance of considering both average
mileage within and between vehicle classes to effectively
address emission reductions. Additionally, our observations
revealed that the average mileage of SUVs tends to increase
as vehicles age. This notable finding highlights that the
SUV fleet in Switzerland covered an extensive distance of
12.6 billion kilometers in 2018, resulting in the unnecessary
production of CO2 emissions with each kilometer traveled,
Fig. 8. Therefore, the integration of inter-class and intra-
class classification offers crucial insights for developing
strategies to transform the passenger vehicle fleet and pro-
mote decarbonization. Utilizing an existing estimation-based
model from another country [63], a comparative analysis
was conducted using real data from Switzerland. It is impor-
tant to acknowledge that direct comparisons between two
countries with diverse driving fleets, driving behaviors, road
infrastructures, and vehicle lifespans may not be straightfor-
ward. Nevertheless, these comparisons can provide valuable
insights into the key differences. The findings indicate that
vehicles in Switzerland greatly surpass the estimated annual
mileage in the years following their initial registration.

VI. CONCLUSION
The accurate estimation of average annual vehicle mileage
holds immense importance in conducting effective emission
analyses and making informed decisions in sustainable trans-
port planning. Incorrect or unreliable mileage values can
result in misguided incentives and long-term consequences.
Therefore, this study aimed to establish a precise model
for calculating average vehicle mileage, enabling a better
understanding of the influence of vehicle segments on real
CO2 emissions. To develop the model, extensive analysis of
mileage data was conducted for vehicles up to 20 years of
age in 2018. Utilizing technical and dimensional features,
vehicles were classified based on a mathematical model.

Additionally, the model considered population size and vehi-
cle age as inputs for calculating average mileage within
each vehicle class. The results demonstrated that the actual
mileage covered by vehicles in Switzerland exceeded the
estimated mileage, particularly after five years of vehicle age.
Themodel’s validity was assessed by comparing it with actual
data from 2015, leading to recommendations for updating
the model coefficients every three to five years. Additionally,
the accuracy of selected model coefficients was affirmed
by applying them to a randomly selected sample within the
vehicle class, exemplifying their applicability and reliability.

Overall, this study successfully developed a model for
accurately calculating average vehicle mileage. The proposed
approach offers several advantages, including automated
vehicle classification of vast databases, facilitating fleet
analysis. The adoption of clustering-based mathematical
segmentation also allows for standardized comparisons of
databases across different regions. Furthermore, as mileage
varies over the age of vehicles, it was observed that the
average mileage of SUVs tends to increase over time. As a
result, combining inter-class and intra-class classification is
essential for gaining valuable insights to formulate fleet trans-
formation strategies aimed at decarbonizing the passenger
vehicle fleet. An area that holds promise for future research
involves utilizing CO2 estimates derived from real-world
measurements instead of relying solely on type approval
values.

This approach would enable a more precise evaluation of
fleet CO2 emissions and further enhance our understanding
of the environmental impact of vehicles. Our results empha-
size the importance of adjusting the vehicle composition and
size to reduce CO2 emissions. This study’s comprehensive
analysis and the development of an accurate model for calcu-
lating average vehicle mileage contribute to advancing CO2
emission analysis, informing sustainable transport planning,
and paving the way for effective fleet transformation strate-
gies to reduce CO2 emissions in the passenger vehicle sector.
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