

 Zurich University of Applied Sciences

MAS Data Science

Master Thesis

Text Classification of Service Desk Tickets

Michael Zemp

Grauholzstrasse 9

3063 Ittigen

Delivery 31st of January 2021

Supervisor Prof. Dr. Mark Cieliebak

Coach Dr. Don Tuggener

 Zurich University of Applied Sciences

Abstract

Manual ticket routing within a large organization is difficult, prone to error and re-
quires a lot of domain-specific knowledge. Even service desk agents struggle with
finding the affected services and support groups. To help these central support
units assign tickets statistical models and neural networks were trained based on
actual historical support cases from a medium-sized internationally active private
bank. Text classification using deep learning has shown a 92% validation accu-
racy in predicting the affected service and therefore enabling an initial routing of
the tickets. Despite poor text quality and mixed languages a macro F1-score of
0.75 is achieved over more than 300 classes. Data preprocessing has shown a
significant impact on how individual classes are being predicted. There is potential
in automated routing as tickets can be classified into requests and incidents with a
93% validation accuracy. Finding the responsible support group itself that can re-
solve an incident has shown promising results yet the extracted data itself lacks
the needed information. It still succeeds to present a good selection of responsible
groups out of which the top four can resolve the issue with a chance of 96%. Dif-
ferent neural networks such as CNNs, LSTMs and Transformers have been tried
with different configurations as well as different tokenization techniques. Overall
trained word embeddings in combination with convolutional layers achieve the
best results in accuracy and macro F1-score. Further pretraining the language
model of RoBERTa, a state-of-the-art transformer-based machine learning tech-
nique, outperformed the best CNN by 0.018 in macro F1-score. When it comes to
real-world application and usability their predictions suffer from the low text quality
and lack the domain-specific terms. The practicability was evaluated by service
desk agents, who were provided the prediction features for their daily work. One
of the features is used daily on the production environment and was deemed to
create value. Additionally, the support group predictions were requested to be im-
plemented in the live system as well.

 Zurich University of Applied Sciences

Table of Contents

1. Introduction .. 1

 Work Environment ... 2

1.1.1. Disclaimer Work Environment ... 2

1.1.2. Used Hardware .. 2

 Scope of this Work .. 2

 Target Audience .. 3

 Structure ... 3

2. Ticket Data ... 4

 Generated Tickets by Service Desk .. 4

 Lifecycle/Process of a Ticket .. 5

 Used training data ... 6

 Labelling of Data ... 7

 Statistical Analysis of the used Dataset .. 7

2.5.1. Vocabulary Size ... 8

2.5.2. Minimum Number of Words in Tickets ... 8

2.5.3. Maximum Number of Words in Tickets .. 9

2.5.4. Number of different Services .. 9

2.5.5. Median/Average Number of Words in Tickets 10

2.5.6. Total Number of Tickets ... 11

 Data Preprocessing ... 11

2.6.1. Regular Expressions used to clean the Data 11

2.6.2. Lowercase ... 11

2.6.3. Spell Checks .. 11

2.6.4. Removing Numbers/Single Characters .. 12

2.6.5. Stop Words .. 12

2.6.6. Removing Languages ... 13

2.6.7. Removing frequently occurring Words ... 13

2.6.8. Train/Test Split ... 13

2.6.9. Content Data Cleansing ... 13

3. Service Classification .. 14

 Main Goal ... 14

 Used Data ... 14

 Data Preprocessing ... 14

 Baseline Model using Logistic Regression .. 17

3.4.1. Results .. 17

 Deep Learning Approach ... 17

 Zurich University of Applied Sciences

 Embedding Layer .. 18

 Network Types .. 18

3.7.1. Convolutional Neural Networks ... 18

3.7.2. Used CNN ... 19

3.7.3. Bidirectional LSTM ... 21

3.7.4. Used Bidirectional LSTM .. 21

 Unbalanced Classes .. 23

 Decisions on Architecture .. 24

 Stopping Training .. 24

 Results Overview of Service Classification ... 25

3.11.1. Best Validation Accuracy ... 25

3.11.2. Macro F1- and Weighted F1-score ... 26

 Discussion on Service Classification Results .. 27

3.12.1. Association of F1-score and Sample Size of Classes 27

3.12.2. Feedback from the Organization .. 28

4. Support Group Classification ... 29

 Introduction ... 29

 Statistics and Data Model for Service Groups ... 30

 Support Group Data ... 31

 Data Preprocessing ... 32

 Baseline Models .. 34

 Network Types used .. 34

 Results of Assignment Group Classification .. 34

 Discussion of Results .. 35

5. Request/Incident Classification ... 37

 Data Preprocessing ... 37

 Baseline Model .. 38

 Network Types used .. 39

 Results of Request/Incident Classification .. 39

 Discussion on Results of Request/Incident Classification 40

6. Transformer Models and Transfer Learning ... 41

 Attention ... 41

 Transformer Models and Language Models .. 41

 Service Classification with a Transformer Model 42

 Result Discussion of Transformer Model .. 43

7. BERT ... 44

 Overview BERT ... 44

7.1.1. Pretraining BERT ... 44

 Zurich University of Applied Sciences

7.1.2. Fine-Tuning BERT ... 44

 Successors of BERT .. 45

 Tokenization BERT Variants: Byte Pair vs Wordpiece Encoding 45

 Results of Fine-Tuning on Downstream Tasks .. 45

 Benchmarking DistilBERT against RoBERTa .. 47

 Additional Pretraining of RoBERTa Language Model 48

 Training a new Language Model from Scratch .. 49

 Further Pretraining of ELECTRA Language Model 51

 Impact of Stop Words .. 52

 Achieving the best Results on a Pretrained Model................................. 52

 Discussion of Transformer Model Results ... 53

8. Help Article Prediction .. 55

 Used Data ... 55

 Data Preprocessing ... 55

 Used Network .. 55

 Results on Help Article Classification ... 56

 Discussion of Results .. 56

9. Discussion .. 57

 Feedback from Service Desk Team .. 58

 Next steps ... 59

10. Acknowledgements .. 60

11. List of references ... 61

12. Table of Figures ... 65

13. List of Tables ... 67

 Page 1 Zurich University of Applied Sciences

1. Introduction

In case of technical problems the first reaction of an employee within a larger or-
ganization is to make a call to a central support unit. The so-called service desk -
sometimes also referred to as IT help - or help desk. This support unit acts as a
single point of contact (SPOC) towards the end user. They often not only answer
technical questions but also provide more general information for example pro-
cess assistance or any kind of guidance related to the workplace environment.
The primary goal of the service desk is to quickly resolve the immediate needs of
the requestor. If they are themselves unable to assist, they escalate the ticket to-
wards a more specific support group:

This core function is also described in the Information Technology Infrastructure
Library (ITIL) an IT service management set of best practices [1]. There seem to
be no studies how many companies worldwide follow the practice of ITIL. Only the
raw number of how many ITIL certifications have been issued in 2018, which is
1.37 millions [2]. Nor any software manufacturer independent studies how many
companies follow the principle of having a centrally managed IT service desk.
However, the sheer number of software vendors [3] providing products to enable
such a function indicates that it is a widespread practice. These software products
support the service desk agent in different ways. For instance, they help document
the issues of the user population as tickets. Allowing to track issues as well as es-
calate and also report in which area most support cases occur. However, despite
having a ticketing system in place a lot of domain-specific knowledge is needed by
the people operating it to know how to handle an inquiry from a user. In the last
few years many vendors started to apply artificial intelligence (AI) to their solutions
[4]. Mostly they provide virtual assistants or chatbots. An end-user feature, which
is geared towards self-service. Less often predictive analytics are focused on au-
tomated categorization, prioritization and routing of incidents and service request
tickets. Usually to make full use of such features it is required to have an “out of
the box” usage of the tool and its processes. Additionally, some features are only
available, if consuming the software as a cloud-based service.

This thesis explores different options of using historical ticket records to classify
and route tickets mainly in order to assist service desk agents. The only infor-
mation needed is the title and description of the initial inquiry of a user in text
form. This is achieved based on the data contained in the ticketing system and

Figure 1: Service desk acts as a single point of contact towards user from the organiza-

tion and as a control center for other support groups.

 Page 2 Zurich University of Applied Sciences

otherwise independent of the actual implementation. The way the data is inter-
preted relies heavily on implementation of the processes within the company.

The main questions to be addressed are: Is it possible to route user inquiries with
models trained on past tickets? Is the text quality within tickets good enough to
make predictions towards which group is responsible for it? Are the results good
enough to be used by a service desk? Are there significant differences in accuracy
and F1-score between different approaches such as statistical learning or deep
learning? How do state-of-the-art natural language processing (NLP) techniques
like BERT compare to traditional deep learning techniques?

 Work Environment

The following work was conducted using actual data from the past three years of
an internationally active, medium-sized private bank. With a few exceptions the
enterprise consumes mostly services from their own IT and has very little products
outsourced. A service is considered one or multiple instantiated applications pro-
vided to the organization with a defined service-level agreement. The enterprise
has multiple service desks for the different requests (business or general) and re-
gions. They accept inquiries from the organization through different channels:
phone, e-mail or intranet forms. The different service desks share the same data
model as well as a common ticketing system. All the used data in this work was
extracted from the used database of this system.

1.1.1. Disclaimer Work Environment

To avoid censoring and to be able to make this document public, details regarding
the company, terminology and detailed statistics are omitted. Implemented work-
flows as well as data structures will be simplified. There will also be no source
code extracts because it is intellectual property of the bank.

1.1.2. Used Hardware

As the extracted data from the service management platform is sensitive all com-
putations had to be done on premise, i.e. inside the company’s network. Google
Cloud TPU could not be utilized. A workstation equipped with an NVIDIA CUDA
compatible GPU with 8 GB of memory was used.

 Scope of this Work

The main focus of this work is to achieve the best possible results, that is mostly
accuracy and macro F1-score for the described use cases in Chapters 3-5. In the
first phase the focus will be to help the service desks to better find which service
is affected and which support group can resolve the ticket. The end goal is to pro-
vide a feasible solution for the whole organization to efficiently route their tickets.
Different methods, architectures of neural networks and state-of-the-art tech-
niques such as transformer-based models are compared on the given tasks.
Therefore, the focus of this documentation is on the results and techniques used
to achieve them. When introducing a new type of model I will briefly elaborate the
basic idea behind the techniques at play. However, it is not the scope of this docu-
ment to explain in detail how and why certain methods work.

 Page 3 Zurich University of Applied Sciences

 Target Audience

The audience of this document are practitioners, who already have a basic under-
standing of machine and deep learning. A basic comprehension of the metrics ac-
curacy, loss, precision, recall and F1-score are a prerequisite to understand why
certain models performed better than others for the given task.

 Structure

In Chapter 2 the service desk tickets will be explained. Tickets are principle data
that is utilized in most of the use cases to train the models. The subsequent Chap-
ters 3-5 all depict the different use cases that are possible by using the ticket ing
data. The common goal of those use cases is to support the service desk in their
daily tasks to efficiently route tickets. Some even hold the potential to enable auto-
mation of ticket routing as exemplified in the corresponding result discussion.
Chapters 6-7 revisit the use case already illustrated in Chapter 3 by applying
transformer models that make use of transfer learning. This represents a para-
digm shift in natural language processing, which manifested with the release of
BERT on the 2nd of November 2018 [5]. Chapter 8 takes a look at a new problem:
Instead routing a ticket, the goal here is to predict a solution to the end user. In
contrast to the other chapters this was merely a proof of concept and is only cov-
ered briefly. Chapter 9 is the overall discussion of the results, but also takes a
look at which of the use cases are already implemented. Further, options how to
improve the discussed models, other opportunities that could be achieved using
the dataset and what needs to be changed to get better predictions are explained
there.

 Page 4 Zurich University of Applied Sciences

2. Ticket Data

“All Service Desk events start with tickets. A ticket is an historical document that
details a service event, such as an incident, problem or service request. Tickets
govern and control how a service event is processed. They are used to routing
events between different resources for resolution.” [6]

This definition sums up perfectly what a ticket is. In this chapter the process of
how tickets are generated by the service desks of the bank and how they are
structured will be described and evaluated.

 Generated Tickets by Service Desk

There are multiple ways how users can create tickets. Moreover, there are differ-
ent ticket types with different workflows. Initially contacting the service desk
through one of the official channels (e-mail, intranet form or a phone call) gener-
ates an interaction ticket. According to the team lead of the service desk there are
geographical differences within the company about the proportion of how many
tickets are submitted through the different channels:

• Europe, the Middle East and Africa: Most tickets are generated via phone
calls towards service desk

• Latin American: Most tickets are generated via intranet form
• Asia Pacific: About an equal number of tickets are generated via phone

calls and intranet form

No matter how the ticket is raised it always ends up with a service desk agent.
The agent processes it and enriches content if needed. Every involvement of the
service desk creates an interaction ticket. These tickets contain the following
structure:

• generated by (selection)
• id (sequential number generated by the system)
• type of ticket (generated by system)
• title of the inquiry (free text)
• description of the inquiry (free text)
• affected service (selection of services)
• affected resource (selection of hardware resource)
• information about the user (such as language)
• additional information:

o category
o owner support group
o assigned support group
o resolution
o primary Contact

Example ticket (based on an actual ticket):

Generated by Call

ID of ticket <sequential_number>

Type of ticket Interaction

Title User cannot log into <banking_application>

Description The user tried to log into the <banking_application> with
his user id and password, however the <banking_appli-
cation> tells him that he is not authorized to do so. The

 Page 5 Zurich University of Applied Sciences

user has ordered the <banking_application> via order-
ing portal and received an e-mail that the request was
completed.

Affected service SV-<BANKING_APPLICATION>

Affected resource <workstation_name>

Category incident

Primary contact <user_name>

Language of user English

 Lifecycle/Process of a Ticket

As described in the previous section a user can open an interaction ticket by dif-
ferent events. The general lifecycle of the ticket mainly depends on whether the
ticket can be resolved by the service desk agent together with the caller. In the ex-
ample given in Table 1 the user seems to have properly ordered access to the ap-
plication. The service desk agent can do some initial checks, but at some point
has to forward the ticket to the corresponding support unit of the affected service
to resolve the problem.

It is important to note that the service desk does not address the root cause of the
ticket, but mainly provides a solution to the requestor, so they can continue their
work. If the service desk cannot provide an immediate solution or a workaround
they forward the ticket as shown in Figure 2:

Table 1: Simplified ticket example from the company's ticketing system

Figure 2: Ticket escalation, if the service desk agent cannot immediately resolve the issue

 Page 6 Zurich University of Applied Sciences

Whether the interaction ticket generates a request or an incident ticket depends
on the following circumstances. An incident will be opened if a system is unavaila-
ble due to an error or an interruption of a service. In the corresponding ticket the
service desk agent selects the affected service. The corresponding team gets noti-
fied and can work on a workaround. Like previously mentioned in those cases it is
generally not possible for the service desks to resolve the issue themselves. In
contrast, a request represents rather something that the user desires or something
that needs to be corrected caused by the requestor himself. A classic example
would be the reset of a password.

More details on how the assignment of tickets works, details about the relation of
support groups to services and the different scenarios of how a ticket can be
closed will be covered in Chapter 4: Support Group Classification.

 Used training data

Except for a user opening an incident himself the first ticket that describes an in-
quiry is always of the type interaction. An interaction always has the following
mandatory fields

• title
• description
• affected service

which the service desk agents enter, when they open the ticket. If submitted by a
form the user provides title and description himself. The service desk agents then
select the predefined services from a list. These service objects contain many re-
lated data to support operational teams such as criticality, support hours, recovery
time objective, responsible support groups, ownership and many more.

The system generates the following information automatically based on the se-
lected service and attaches them to the ticket:

• owner support group (corresponding to the service desk that opened the
interaction in the first place)

• assigned support group (initially the service desk)

Figure 3: Ticket relationship to support groups

 Page 7 Zurich University of Applied Sciences

Linking a ticket to a service enriches the ticket with the default support group. Es-
tablishing the affected service of a request or incident ticket is therefore crucial in-
formation for timely resolutions. When a ticket is assigned to a service this auto-
matically triggers

• an e-mail to the members of the responsible support group,
• an e-mail to the corresponding group mailbox,
• further escalation steps (depending on the defined service level manage-

ment parameters: priority and service hours), such as a text message to
the person on duty

The goal of the service classification use case hence is to predict the affected ser-
vice based on the free text field title and description, which is also the topic of
Chapter 3.

 Labelling of Data

The service desks of the different regions did most of the ticket labelling. All the
processes that make use and work with tickets (e.g. incident management pro-
cess) are embedded into the whole organization. The needed ticket classification
towards a service or support group and also request/incident escalation is con-
ducted manually by a large part of the employees on a daily basis. Hence, all the
historical data is already labelled by the responsible service desk or other support
groups that open, resolve or close tickets.

 Statistical Analysis of the used Dataset

The used data in this work consists mostly of two different ticket types: interac-
tions and incidents. Both contain the initial title and description of the issue. Tick-
ets from all different channels are included. As previously mentioned an interac-
tion can be the trigger to initialize a request or an incident ticket. The contained in-
cident tickets have no linked interaction (standalone incident tickets) and were
opened manually. All tickets opened by external systems or a monitoring applica-
tions were excluded. The main reason for this decision was the poor quality of the
contained title and description of those records. The statistics shown in Table 2
are after applying the following data preprocessing operations and include the title
concatenated with the description:

• removing special characters and only allow numeric values and characters
of the English alphabet

• converting all words to lowercase

date of export November 2020

number of tickets (interactions and incidents combined) 1’075’117

average number of words per ticket 31

median number of words per ticket 22

minimum number of words in ticket 2

maximum number of words in ticket 1’731

number of different affected services (classes) 680

vocabulary size in collection 497’460

Table 2: Dataset statistics before data preprocessing

 Page 8 Zurich University of Applied Sciences

There are a few indications based on the numbers, which are going to be ad-
dressed in the following subchapters and also explained in detail by looking at a
few examples.

2.5.1. Vocabulary Size

Probably the most noticeable thing is the size of the vocabulary: 497’460. An Eng-
lish native speaker knows about 42’000 words and uses 20’000 of them frequently
[7]. The large difference to the vocabulary size is a strong indicator that the title
and descriptions are either

• in multiple languages or
• there are many proper names contained in the data (e.g. brand and product

names, abbreviations, client names, account numbers etc.)

A closer look at the data reveals that both assumptions are true. Screening
through a couple of dozen tickets reveals the presence of at least 5 different lan-
guages. One ticket can even contain multiple languages as sometimes service
desk agents directly quote the problem description from the user, who called
them. The same is true for the tickets that were submitted via an intranet form: as
the user often writes in his native language. Analyzing the data with the langdetect
package [8] shows that there are 21 different languages present, however some
languages detected such as Finnish or Norwegian are detected wrongly. I suspect
the following reasons for this:

• text too short
• domain-specific terms, which are not part of any dictionary
• spelling errors

The spelling errors are a consequence of how the tickets are created. Service
desk agents have to listen to the customer, consult on the problem and at the
same time quickly take notes. Also, there is no spelling check built into the ticket-
ing system to help them.

The second reason for such a large vocabulary is obvious when looking at some
ticket titles. It almost seems that the corporation has its own language. For exam-
ple, applications are addressed by their internal project code names or abbrevia-
tions. Moreover, to help solve the ticket a lot of additional information is added by
the agent or the person, who opens up the incident ticket:

• lot of exemplary data (e.g. account names or transactions)
• error messages of the application
• application log entries
• first and last names of affected users
• host names (affected clients/servers)
• inventory numbers or model of affected devices
• dates: day/month/year/hour of occurrence
• user ids

Adding this kind of information to a ticket obviously makes a lot of sense and
helps with resolving the ticket.

2.5.2. Minimum Number of Words in Tickets

As the description field is a mandatory field the length of text should clearly not be
zero. Therefore, these tickets can be omitted. Removing of those tickets leads to
the minimum text length of one. Looking at the description of tickets with equal to
or less than 10 words leads to two observations:

1. They contain only placeholders, e.g. “ticket opened”

 Page 9 Zurich University of Applied Sciences

2. The text has little to no information whatsoever, e.g. “user cannot access
application”

Both are most likely only opened for reporting purposes. The second case might
be valid from a perspective of the agent. However, in the use case of classifying
towards an affected service these cannot be used for training. There is just too lit-
tle information to allow a classification based on the given text.

2.5.3. Maximum Number of Words in Tickets

0.002% of the tickets contain more than 300 words. In a lot of those instances log
entries or error messages were added from the affected system. These cryptic
texts contain for instance “ArrayIndexOutofBounds”-exceptions or console output
of the affected system. This can be very valuable in the pursuit of a solution. Be-
sides added technical information sometimes the opener and involved groups that
were assigned to the ticket also append information during troubleshooting. We
are not interested in both circumstances. The goal of the model is to predict based
on the initial description of the issue.

2.5.4. Number of different Services

The number of different services corresponds with the number of classes to pre-
dict for the service classification in Chapter 3. Looking at the number of tickets as-
signed to each class reflects an uneven distribution:

The top classes in terms of ticket count not only reflect the actual usage of the or-
ganization, but also seem to serve as a sort of default or bucket: Top 12 services
make up 63% of the total ticket count in the dataset. The rest is distributed onto
the remaining 668 classes.

The one class that stands out in this regard is the one representing the workplace.
Many tickets assigned to this class could have alternatively also been assigned to
the specific service causing the problem rather than the chosen generic class.
This clustering of so many tickets around so few services is also a consequence
of the presence of the high number of classes. There are over 850 valid services.

Figure 4: Number of available records per service/class

 Page 10 Zurich University of Applied Sciences

But also the fact that there is no good search option supporting the assignment of
tickets to services. It is also not always easy based on a first issue report to de-
cide if the problem relies on the setup of the workstation, its operating system, any
infrastructure components or in fact really the affected application.

Looking into various classes with very few tickets (<20 samples) two different
cases manifest:

1. The attempt was made to pinpoint the precise application that was af-
fected, however the effort was abandoned or not done consistently. Mean-
ing that certain service desk agents worked hard or had the knowledge and
experience to do so. Sadly, it was not done consistently, rendering those
classes almost useless. Most people in the organization just picked one of
the bucket classes.

2. Many of the classes with only very few tickets were misclassifications.

The collected ticket set dates back to the year 2017. As a result certain services
are no longer operational. So even though they have tickets assigned to them, it
would be wrong to still use them because the support groups behind those ser-
vices could also be retired by now.

2.5.5. Median/Average Number of Words in Tickets

The total number of tickets is 1’075’117 and the average ticket has 31 words.
Maybe more representative in this case is the median of 21 because there are
quite a few outliers. So, a typical ticket is a brief and concise description of the re-
ported user inquiry. About 70% of the interaction tickets are closed directly by the
service desk. Therefore, no verbose description of the users call reason is neces-
sary. Problematic are the tickets that contain 0-1 words and also the ones that

contain 1-10 words (as depicted in Figure 5). These tickets can be entirely re-
moved as they contain too little information to allow a classification.

Figure 5: Number of words per ticket count

 Page 11 Zurich University of Applied Sciences

2.5.6. Total Number of Tickets

The dataset contains 1’075’117 tickets and spans from Q2 2017 until Q4 2020.
So, about ~300’000 interaction- and incident-tickets per year. The number of gen-
erated tickets depends heavily on the year and even weekdays show significant
differences in creation. Due to data security concerns graphs about frequency of
ticket creation and differences between years will not be published in this thesis.

 Data Preprocessing

How the data is preprocessed to train a model has evolved in the preparation of
this work. At the earlier stages of the work the focus was on accuracy and later
shifted towards weighted and macro F1-score. Described first are the most obvi-
ous ones, e.g. remove services that are no longer active. Certain steps have been
added to optimize the performance of the model, e.g. remove stop words. The
preprocessing of the data also depends on the different use cases. These are out-
lined in the Chapters 3, 4 and 5. All the chosen data preprocessing decisions for
each use case and how they affected the init ial statistics described above are il-
lustrated separately. In the following the decisions on data cleansing are ex-
plained.

2.6.1. Regular Expressions used to clean the Data

The immediate extract from the database of the ticketing system provides data
that contains many special characters. Reading it into a Pandas data frame
caused many problems. Therefore, a regular expression was applied to the free
text fields, which leaves only characters and numbers.

With the only exception for “-” as a lot of application names contain a dash. These
are replaced by blanks before the above described regular expression is applied.

2.6.2. Lowercase

All the words/characters in the tickets are converted to lowercase as the casing
capitalization is not applied consistently by the ticket creators.

2.6.3. Spell Checks

What was avoided in all data preprocessing steps is spellchecking. As already
pointed out in Chapter 2.5.1 spelling errors are quite common in the tickets. In the
early stages of the development and training of the model I tried to use pyspell-
checker [9]. The results due to the many technical terms, abbreviations and proper
names were not satisfying. A few examples:

raw value actual meaning corrected value

“ie” short form for “internet explorer” “die”

“werden” 3rd form plural future tense of verb “to be” in Ger-
man

“warden”

“crm” reference to client relationship management tool “erm”

“vdi” virtual desktop infrastructure “di”

“diesen” German demonstrative pronoun “diesel”

“soko” application name “solo”

“cannot” English verb form meaning “not able to” “cannon”

 Table 3: Examples of automated spelling checks

 Page 12 Zurich University of Applied Sciences

These are just a few examples of where the spell checker ultimately changed the
meaning of a word. Out of pure curiosity I also ran a few simulations with the now
altered vocabulary and the results were worse than without the autocorrection.
That is why I abandoned this approach pretty early on.

At the very end of the thesis the topic came up again when using pretrained mod-
els. Because these models were trained on proper data the assumption was that
due to unknown vocabulary (caused by the spelling errors) for instance the to-
kenizer of these models could not handle the misspelled words because they are
not in the vocabulary. I attempted to use word embeddings, such as word2vec and
followed the instructions of the article “Embedding for spelling correction” [10]. In-
deed, similar words were grouped together, however sometimes similar can mean
something completely different. For instance, the words “ebanking” and “ebanking-
apac” were very closely grouped together, but they are two completely different
applications and belong to different classes. At first glance this also seemed not
promising and because of time constraints I also decided not to go further down
this path.

2.6.4. Removing Numbers/Single Characters

There is quite a lot of noise in the data that does not contain a lot of information to
help classify a ticket. The description of the ticket frequently contains sequences
of numbers. For example,

• “12 05 13” represents a time
• “12 12 20” refers to a date
• “104832192” could be a client number or a trade

As these numbers contain little to no information for my purpose I thought about
removing them. Yet sometimes they do contain very significant information, which
I could verify via running predictions. For instance, whether the operating system
is “Windows 10” or “Windows 2018” matters. Because in one case the ticket gets
routed to the client team and in the other to the server team.

In addition to number sequences there are also many single characters in the
data. They can be remnants of applying the regular expression, which excluded all
special characters. In most cases, they contain no valuable information, however
there are certain cases where they again provide vital information. For instance, if
it is “c drive” or “d drive” matters. In the end I decided not to remove numbers or
single characters.

2.6.5. Stop Words

The exclusion of stop words seems to depend on the use case. In many text clas-
sification examples they are excluded in the data preprocessing before training. In
other examples they remain in the training data. The advantages of removing stop
words is that they contain little to no unique information, text length decreases
(shortens the training time) and it can improve the overall performance of the
model as fewer and only significant words are left [11]. A clear disadvantage of re-
moving stop words is that it can change the meaning of the text [11]. Especially in
sentiment analysis a stop word like “not” can make a huge difference.

My approach: At the very start of training a new model I always excluded the
standard English stop word set from the NLTK project [12] with slight modifica-
tions. Because the ticket text changes quite significantly I excluded the following
words from the set:

➔ “no”, “not”, “nor”

Overall excluding stop words improved the accuracy of all predictions by about 1-
2% over all models (except for the transformer models in Chapter 7).

 Page 13 Zurich University of Applied Sciences

2.6.6. Removing Languages

Using the langdetect package [8] shows that about 60% of the tickets are in Eng-
lish. I started to use just tickets that according to the prediction of the langdetect
framework were in English. As a consequence the vocabulary size shrank down
by 30%. Analyzing the filtered data showed there were still tickets present in other
languages. Sometimes the text of a particular ticket contained multiple languages.
For a long time, I trained many neural networks only using the records that were
identified as English. For comparison, I trained a network with all the languages
against it and the accuracy was slightly better (~1%).

Looking at the predictions over all the different classes I observed that there was
an increase in the precision and recall on many classes when not excluding non-
English languages. This was also reflected in the macro F1-score. From there on I
decided to not remove any languages and stick with a multi-lingual model.

2.6.7. Removing frequently occurring Words

An idea was to reduce noise within the data. By removing words that occur in
many different classes. This also helped to reduce the input size and training time.
Examples of such words would be “user”, “client” or “password”. One of those
words appear in a vast majority of tickets (over 90%). Removing these from the
text corpus and treating them as stop words lead to worse results. Therefore, this
approach was abandoned.

2.6.8. Train/Test Split

The split between training and test-set over all use cases was the same:

• 67% train
• 33% test/validation

As pointed out the classes are not balanced therefore to ensure that records from
the same class are represented in both sets and also equally distributed I always
applied a stratified shuffle to make the split [13].

2.6.9. Content Data Cleansing

Over time there can be changes in the responsibilities between services and sup-
port groups. A service can be split into multiple services or central support groups
can take over operational responsibilities. This affects the way how tickets are
routed and also influences the labelling of services onto tickets. Therefore, I also
monitored the trend for each class how many tickets get assigned. If there was a
sudden drop in ticket assignments I started to look for reasons and took according
measures. For instance, excluding classes that are no longer being used, only use
a certain timeframe, adjust the labelling for past tickets or exclude tickets entirely
if they no longer represent valid support cases.

 Page 14 Zurich University of Applied Sciences

3. Service Classification

The main use case evolved from a user experience review of the ticketing system
conducted in February 2020. One of the outcomes was that it is hard to find the
affected service based on a selection of over 800 classes. The consequence of a
misclassification has impact on the reporting. But even more important: If there is
an escalation of a ticket, it is routed to the wrong support group. As a reminder:
Escalating a ticket means that the service desk could not resolve the issue and
created a “service request” or an “incident”. Selecting the wrong service initially
results in the ticket being forwarded to the wrong responsible group. This ulti-
mately can lead to a so-called “ping-pong”-ticket. Because the support group that
got the ticket does not feel responsible. Often they evaluate the issue anyway (to
be on the safe side) and then reassign the ticket back to the service desk, who
has to reassess the ticket again. This can in fact lead to a lot of work on a few dif-
ferent parties and more importantly the user or even in the worst case the client
has to wait. If it is a blocking issue this means he cannot complete the tasks he is
working on and this causes expensive downtime.

As previously pointed out service desk agents are not the only ones opening tick-
ets in the ticketing system. Incident tickets are frequently opened by IT employ-
ees. In fact, they are even less aware and trained about which service could be af-
fected. Therefore, predicting the affected services does not only benefit service
desk.

 Main Goal

The primary goal is to provide a utility that can predict the affected service based
on the initial title and description of a user inquiry. The title and description are in
free text form. Each ticket can only point to one service. So, this is a classification
problem.

 Used Data

For the purpose of predicting the corresponding service to a ticket the data de-
scribed in Chapter 2 is used: the free text fields contained in the interaction and
incident tickets. This means mostly the initial description for the purpose of finding
the proper class. The title of the ticket as well as its description is concatenated
and used as a single string:

<title of ticket> + <description of ticket>

 Data Preprocessing

Additionally to the data preprocessing, described in Chapter 2.6, three more steps
are added as shown below. The sequence illustrated and the chosen thresholds
(e.g. exclude classes with 20 or fewer tickets) are not optimized to achieve the
best accuracy or macro F1-score. It was chosen in regard to the data, so for in-
stance to exclude misclassified tickets or to not include classes that should no
longer have tickets assigned to them because they are retired.

 Page 15 Zurich University of Applied Sciences

This reduces multiple statistics of the dataset in the following way:

date of export November 2020

number of tickets (interactions and incidents combined) 659’312

average number of words per ticket 29

median number of words per ticket 24

minimum number of words in ticket 11

maximum number of words in ticket 1’474

number of different affected services (classes) 312

vocabulary size in collection 30’161

The following can be observed:

• Number of tickets is reduced by almost 40%
• Average number of words is slightly lower from 31 to 29
• Median number of words is slightly higher from 22 to 24
• Maximum number of words in tickets is decreased by 300 words
• Number of classes goes down by more than 50%
• Vocabulary is significantly reduced from 497’460 down to 30’161

All remaining classes have 20 or more tickets (as can be seen in Figure 7). The
top 12 classes still make up about 63% of all samples while the rest are in the re-
maining 300 classes.

Table 4: Text statistics after data preprocessing

Figure 6: Data preprocessing for service classification

 Page 16 Zurich University of Applied Sciences

Words per ticket count are also capped on the left side. Most tickets (~88%) are
now between 10 and 50 words:

Figure 7: Samples or records per service/class after data preprocessing

Figure 8: Word count per ticket after data preprocessing

 Page 17 Zurich University of Applied Sciences

 Baseline Model using Logistic Regression

Establishing a baseline model is done by a logistic regression and random forest
from the sklearn package [14]. The tf-idf tokenizer is configured without a vocabu-
lary limit.

3.4.1. Results

Both models were fitted after the same data preprocessing:

Model Logistic Regression Random Forest

Accuracy 0.86 0.75

Macro F1-score 0.69 0.54

Weighted F1-score 0.86 0.75

 Deep Learning Approach

After establishing the baseline in the previous chapter the next step was to train a
neural network with the same data (including the same data preprocessing steps).
Deep learning has surpassed classic machine learning approaches in regard to
text classification [15]. Also, on the data competitions on Kaggle notebooks using
neural networks win most competitions [16]. According to the primer of Yoav Gold-
berg [17] neural networks with embedding layers offer better performance than lin-
ear classifiers.

“The non-linearity of the network, as well as the ability to easily integrate pre-
trained word embeddings, often leads to superior classification accuracy.” [18]

After data preprocessing the process is pretty much the same as for the linear re-
gression: Splitting the data into train and test sets. The tokenizer then replaces
each word with an integer and every ticket is thus represented as a vector. The
objective of the training is to minimize the defined loss function over the training
dataset. In contrast to a logistic regression these models have no linear function.
Instead, the neural networks have layers with a specified number of neurons. The
layers are then stacked on top of each. Each layer has a defined activation func-
tion, which defines how the neurons act. During training the weights of connec-
tions between neuron are adjusted with the goal to minimize the defined loss func-
tion.

The biggest challenge besides understanding how deep learning works is to
choose the right configuration and hyperparameters: The selection of parameters,
type of network and architecture that achieves minimal loss, high accuracy and
F1-score. But also tweaking learning rate, batch size, number of layers, type of
layers, kernel size, neurons per layer, pooling layers, activation functions on each
layer, and many more can have an impact on the performance of the model. This
results in many different combinations to try. There are different methods of how
hyperparameters can be optimized. For choosing the optimal parameters per net-
work type in this thesis a random search was conducted. What makes it even
more difficult is that the process of finding the right architecture of a network can
depend on the dataset. There is no “one-fits-all” neural network. This can be ob-
served easily by just applying different best scoring neural networks (from Kaggle
notebooks) intended for similar tasks – in this case text classification. The results
can vary strongly as they did in my case.

Table 5: Results of baseline models for service classification

 Page 18 Zurich University of Applied Sciences

 Embedding Layer

Before going into the different architectures of neural networks such as the convo-
lutional neural networks (CNNs) and “long short-term memory” neural networks
(LSTMs), I would like to introduce the word embeddings. An embedding layer was
used in combination with every neural network type. As can be seen in Figure 16
they are a key component of the results that were achieved. Word embeddings
are learned during training and words with similar meaning will have a similar rep-
resentation in this layer. Every word from the text corpus is represented as a vec-
tor in a predefined vector space, often with hundreds of dimension. As training
progresses words that have similar meaning or that often occur together will be
placed “closer” to each other. This captures sort of the meaning of words [19].

By using an embedding layer the specific words of the ticket dataset that we work
with is learned. This approach requires a lot of training data and slows down the
training time per epoch quite significantly [19]. There is a recommended guide on
this subject “Practical Text Classification With Python and Keras” [21] that I also
followed at the very start of this thesis.

 Network Types

For text classification the neural networks that seem most promising based on var-
ious articles [22] [23] [24] and best submissions on Kaggle competitions [25] [26]
[27] [28] are the following:

• Convolutional Neural Networks (CNNs)
• Long short-term memory neural networks (LSTMs)
• Gated recurrent units neural networks (GRUs)

Basically, LSTM and GRU networks are recurrent neural networks (RNNs) vari-
ants that were designed to mitigate the vanishing gradient descent. RNNs in gen-
eral are used for modeling sequence data such as time-series forecasting, natural
language or other sequence tasks [29]. In RNNs the output of the previous step
(also called the hidden state) is used as input for the next one. This was a new
concept as with other network types inputs and outputs are independent of each
other. The idea was implemented to be able to better predict the next word of a
sentence because in every sentence the preceding words are always determining
what comes next. A hidden state stores information about all previous steps and is
added to the input to make a better prediction. As mentioned at the beginning of
this passage over longer sequences the information about what came at the very
start will start “degrading” (vanishing gradient problem). This happens because
the hidden state cannot hold the information about everything that came before.
This is problematic as sometimes the most important word (for instance the sub-
ject) will be at the start of the sentence. An illustrated guide how recurrent network
work can be found in the “Illustrated Guide to Recurrent Neural networks” [30].

In the following subchapters the most successful networks are described.

3.7.1. Convolutional Neural Networks

Convolutional neural networks (CNNs) were first used in the 1980s [31]. As classic
neural networks, also referred to as fully connected neural networks (fcNNs) have
all neurons between two layers connected, in CNNs only a small predefined num-
ber of the adjacent input is connected to a neuron of the next layer. Therefore,
they are considered a better architecture when the order within data matters. In
2012 AlexNet, a famous CNN, first could surpass the performance of state-of-the
art image recognition [31]. There were two factors involved that helped their
breakthrough in 2012 [31]:

 Page 19 Zurich University of Applied Sciences

1. Availability of training sets like ImageNet
2. Commoditized GPU hardware to train neural networks

Since 2012 CNNs have been used popularly in vision tasks. But they can also de-
liver good results in text classification [32].

3.7.2. Used CNN

For the purpose of classifying services I used two different neural networks. A lot
of experimentation was done in terms of:

• inserting different number of layers between the embedding layer and the
output layer

• adding dropout layers
• using different pooling layers
• adjusting the kernel size within the convolutional layers
• using different activation functions

The idea of applying zero-padding after the embedding layer came from a paper
that used attention-based CNNs [33]. In addition, I conducted a random search to
find the best hyperparameters.

The following two CNNs performed the best in terms of validation accuracy and
macro F1-score:

The first CNN has a simpler architecture: After the embedding layer, there is a
zero padding layer, after which follows the convolutional layer and between the
output layer and the convolutional layer, there is a global maxpooling:

Figure 9: Single CNN layer configuration that performs best

 Page 20 Zurich University of Applied Sciences

Best CNN Results

Training time per epoch was 575 seconds.

Best results achieved (in bold) in terms of validation loss and validation accuracy:

epoch accuracy val_accuracy loss val_loss

4 0.9603 0.9157 0.1475 0.3399

8 0.9923 0.9204 0.0338 0.3831

➔ Macro F1-score: 0.746

The idea of the following architecture was proposed in the paper “Convolution
Neural Networks for Sentence Classification” by Kim Yoon et al. [34]. Different
convolution layers of different filter sizes are used, this creates different skip-gram
models. The different filter sizes represent the number of words it is applied to:

Table 6: Results from network with single convolutional layer

Figure 10: Single CNN training accuracy and loss development over 14 epochs

Figure 11: Network with multiple convolutional layers in parallel

 Page 21 Zurich University of Applied Sciences

Best CNN 2D Results

Training time per epoch was 1254 seconds.

Best results achieved (in bold) in terms of validation loss and validation accuracy:

epoch accuracy val_accuracy loss val_loss

25 0.9801 0.9174 0.0914 0.3352

37 0.9943 0.9211 0.0296 0.3586

➔ Macro F1-score: 0.75

3.7.3. Bidirectional LSTM

Long short-term memory neural networks (LSTMs) can be considered an improve-
ment over classical RNNs to mainly mitigate the vanishing gradient problem. This
improvement enables the network to maintain information with some kind of
memory over a longer sequence [35]. It is achieved by the internal structure of the
units [36]. They contain an internal mechanism called gates that regulate the flow
of information [36]. The gates learn what data in the sequence is important (so to
keep or to throw away). Until about 2018 many state-of-the art results were
achieved by LSTMs or GRUs [37].

Bidirectional LSTMs are an extension over classic LSTMs that can improve perfor-
mance on sequence classification problems [38] [39]. During training two LSTMs
on the input vector are trained instead of one. This can provide additional context
and can provide better results. In practice the gains in accuracy were minimal (1-
2%), but at an already achieved 89% validation accuracy this is a lot.

3.7.4. Used Bidirectional LSTM

After experimenting with the layers and their hyperparameters I used the same
LSTM neural network in two different ways: One with word tokenization and the
second one with character-level tokenization. I chose the character-level tokeniza-
tion to try to mitigate some of the poor text quality discussed in Chapter 2.5.1 and
2.9.3. Both LSTM neural networks have a similar architecture: Embedding layer at
the start, then spatial dropout (0.1), a Bidirectional-LSTM layer and before the out-
put layer the global maxpooling.

To quicken the training time on the LSTM networks the fast LSTM implementation
backed by CuDNN was used [40]. With the conventional LSTM-layer the training

Table 7: Results from network with multiple convolutional layers

Figure 12: Multiple CNN training accuracy and loss development over 30 epochs

 Page 22 Zurich University of Applied Sciences

time was significantly longer: An epoch took about 20 times longer as compared to
the CuDNNLSTM.

Best Word-Level LSTM

Training time per epoch was ~1214 seconds.

Best results achieved (in bold) in terms of validation loss and validation accuracy:

epoch accuracy val_accuracy loss val_loss

4 0.9329 0.9089 0.2392 0.3599

6 0.9564 0.9122 0.1507 0.3719

➔ Macro F1-score 0.71

Table 8: Results from Bidirectional LSTM network (word-level)

Figure 13: Network with Bidirectional LSTM layer

Figure 14: Bidirectional LSTM (word-level) training and loss development over 7 epochs

 Page 23 Zurich University of Applied Sciences

Even though the validation loss started to increase and the validation accuracy did
not get better, the macro F1-score started to improve in the following epochs. The
Highest score in terms of F1-score was reached at 10 epochs:

epoch accuracy val_accuracy loss val_loss

10 0.9826 0.9100 0.063 0.4759

➔ Macro F1-score 0.73

Best Char-Level LSTM

Training time per epoch was 1257 seconds.

Best results achieved (in bold) in terms of validation loss and accuracy:

epoch accuracy val_accuracy loss val_loss

18 0.9471 0.9017 0.1801 0.4133

20 0.9578 0.9045 0.1440 0.4186

➔ Macro F1-score 0.72

 Unbalanced Classes

One of the challenges was the high variance in samples per class (as already
mentioned in chapter 2.8.4). To deal with the unbalanced classes two actions
were taken:

• StratifiedShuffle [13] to ensure that there is a proportional amount of class
samples in the train and test set

• Calculate class weights and use them in the training process

Table 9: Results of further training Bidirectional LSTM (word-level) - F1-score improved with climb-

ing loss and stagnating accuracy

Table 10: Results from Bidirectional LSTM network (char-level)

Figure 15: Bidirectional LSTM (char-level) training and loss development over 25 epochs

 Page 24 Zurich University of Applied Sciences

 Decisions on Architecture

Despite using different feedforward neural network layers all tested models be-
haved similarly to the following changes in network architecture and input vector.

In summary, I was able to observe the following:

Impact on ac-
curacy as well
as on F1-score

Attempted architecture or configurations on different neural
networks

Negative • truncating the number of words of input vectors to below
50

• adding more hidden layers lead to worse results, each ad-
ditional layer lowers accuracy by about 2-3%

• using proposed sets with less stop words than the one
from the nltk package

• using a GlobalAveragePooling layer

No effect • increasing the number of words of input vector to more
than 300

• excluding tickets with another language than English (with
langdetect)

• increasing dimension of embedding layer above 200
• dropout

Positive • the embedding layer is key – it improves results signifi-
cantly – especially in smaller classes

• global maxpooling also improves results – best before the
output layer

• changes in data preprocessing by reducing vocabulary and
classes

• higher badge size improved accuracy slightly

 Stopping Training

The following results are not based on a fixed amount of trained epochs. Actually,
each network type had to be trained on a different number of epochs as seen in
the Table 12:

network type total training time number of epochs reached accuracy

CNN ~76 minutes 8 0.9204

CNN 2D ~678 minutes 37 0.9211

BiLSTM (word) ~140 minutes 7 0.9122

BiLSTM (char) ~419 minutes 20 0.9045

In some cases validation loss and validation accuracy started to increase. So the
model got more correct predictions overall, however less confident in those pre-
dictions. It might also occur that some samples get predicted really wrong. If this

Table 11: Impact of different configurations on accuracy and F1-score

Table 12: Comparison between networks for service classification

 Page 25 Zurich University of Applied Sciences

started happening I let the model train a few epochs longer in favor of the valida-
tion accuracy and macro F1-score. So I finally stopped training when validation
accuracy as well as macro F1-score stagnated even though validation loss started
to go up. To see if this overfitting had a bad effect on the predictions of certain
classes, I checked the individual class report (precision & recall) after each epoch
to check if predictions on some classes started to degrade in favor of bigger clas-
ses. This was not the case. As the validation accuracy stagnated or the gains
were minimal, I stopped training. These are the results that are noted below.

 Results Overview of Service Classification

Following are the best results for the most promising neural networks discussed in
Chapter 3.7 after conducting a random search for hyperparameter optimization.

3.11.1. Best Validation Accuracy

All neural networks using an embedding layer achieved between 90% and 92% in
accuracy on the validation set. Overall both CNNs achieved the best accuracy,
which was around 92%. There were no significant gains from using the one that
has multiple kernel sizes (CNN 2D). Training time per epoch was also significantly
longer – in fact almost 5 times longer than the simpler CNN, and it took 29 epochs
longer to reach the highest validation accuracy and macro F1-score.

Figure 16: Comparison validation accuracy of all trained networks

 Page 26 Zurich University of Applied Sciences

3.11.2. Macro F1- and Weighted F1-score

The models that performed best were also compared in regard to the achieved
macro F1-score, which gives an indication how well they performed over all clas-
ses. Again, all models were evaluated at their best achieved score (accepting a
slightly higher validation loss):

Figure 17: Comparison F1-score between best performing networks for service classification

A slight modification was made on the data preprocessing of the CNN 2D. In the
CNN 2D to the far right only tickets that could be identified as English were used.
This reduced the datasets size from 659’312 to 538’121 records. Although as
previously pointed out not all tickets identified as being in English are only in
English. They also contain other languages. This is reflected most prominently in
the vocabulary. There are still many German words included after trying to get rid
of the non-English tickets. The results of the CNN 2D with only the English tickets
was not better – it was even slightly worse (-0.06 in macro F1-score).

The results between the more complex CNN 2D and the simpler CNN are
insignificant. Because of the huge differences in training time I therefore continued
to use the simple architecture of the CNN for the subsequent use cases.

The linear model based on the logistic regression now performs significantly
worse only reaching 0.68 against the 0.75 macro F1-score of the CNN. Even
though only performing slightly worse (~1%) in accuracy the LSTM now performed
worse in the performance across all classes.

I discovered in the final stage of the thesis that removing the German stop words
again can boost the macro F1-score very slightly by +0.06, thus bringing both
CNNs at around 0.752-0.758.

 Page 27 Zurich University of Applied Sciences

 Discussion on Service Classification Results

With so many classes and especially with the presence of classes that contain a
two figure percentage of all samples (as can be seen in Chapter 2.8.4), especially
metrics like accuracy can be masked. For instance, predictions for large classes
are usually better because they contain many more samples. It is very difficult to
visualize a confusion matrix for over 300 classes, so I tried to show how well the
F1-score is across all classes in the histogram below:

There are a few classes where the model makes bad predictions (F1-score of
below 0.5) for the validation set. However, it needs to be noted that at least in a
handful of cases the assignment towards a service was done very inconsistently
by the service desk. In those cases the predictions will obviously suffer as well.
Overall the performance of the model is pretty good, about 70% of the classes are
above an F1-score of 0.6 and about 50% of the classes are even between a score
of 0.8 and 1.

One of the biggest gains in terms of accuracy and macro F1-score was also
accomplished through the data preprocessing: Excluding classes/tickets/stop
words, limiting the vocabulary, removing no longer used services and taking into
consideration the validity of classes over time (implemented by using custom time
frames for certain labelled tickets) made a big difference. Sometimes after
adjusting the data preprocessing also the hyperparameters needed to be tweaked
again to get better results – for instance the kernel size of the CNN.

3.12.1. Association of F1-score and Sample Size of Classes

With some classes having more samples there was also more data to train on. I
assumed that these classes would be predicted much better than their counter-
parts with fewer samples. My assumption was that most classes with very little
samples and training data get worse predictions. According to this hypothesis on a
graph, where the y-axis shows the sample size of the classes (in tickets) and the

Figure 18: CNN F1-score distribution across all classes of the Service Classification

 Page 28 Zurich University of Applied Sciences

x-axis displays the reached F1-score all data points in the plot, would be scattered
uniformly around a linear increasing slope. So that high F1-scores are always as-
sociated with higher samples sizes.

Looking at the actual plotted graph below, the first assumption proves to be true:
By trend more samples and more training data seems to result in better predic-
tions. Though the second speculation proved to be wrong. There are many clas-
ses present in the higher F1-score regions that have very few samples.

3.12.2. Feedback from the Organization

The LSTM and the CNN were provided to people in the organization: To the devel-
opment team, who is in charge of the ticketing system and to the service desk,
which does ticket classification as their daily work. Feedback from those teams
was collected in three workshops with the last one in January 2021. As a re-
minder: In terms of accuracy both models performed very similarly: The LSTM
0.91 and the CNN 0.92. The significant differences were in the macro F1-score.
This difference even if it was just 0.04 was apparently noticeable to them. They fa-
vored the CNN over the LSTM. Overall the feedback from the organization of us-
ing both (the LSTM and CNN) was well-received. Especially the ability of the
model to predict the service based on a few words was assessed very useful.
Looking at the logs this is also what it was used for in most cases. Sometimes
even just one word is sufficient for a successful classification. This was also one
of the main outcomes in the feedback sessions. There are indeed these power
words that are organizational specific. These can be project codes, names that
were used when the application/service was introduced, but the organization kept
holding on to them or abbreviations referring to program names.

Figure 19: CNN distribution of F1-scores of classes against their sample size

 Page 29 Zurich University of Applied Sciences

4. Support Group Classification

 Introduction

Even though the reporting and routing of a ticket initially depends on which service
was chosen, it is not always the support group attached to the service that will be
able to provide a resolution to the escalated ticket (as shown in the Figure 20).
While the affected service remains static on the ticket the assigned support group
changes over time. Different support groups can get involved and contribute to the
solution.

This is also reflected, if looking at ticket statistics in Table 13. 26% of all incident
tickets get reassigned after they have been initially opened. It is worth mentioning
that there are incident tickets that have been reassigned up to 43 times.

type of ticket # of tickets # reassigned (>1) percentage

request 116’128 20’401 17.5%

incident 89’695 23’546 26.2%

The reassignment reason for a ticket is best illustrated with an example scenario:

A user can no longer log into the banks ebanking system with his credentials. If
so, he will call the service desk. They will then most likely ask him a few personal
questions to verify his identity and then proceed to try to resolve the issue. If they
cannot fix it, they will escalate thus creating an incident or service request based
on the interaction they just had with the client. This escalated ticket will then get
forwarded to the support group that is attached to the service. In the actual system

Table 13: Support group ticket reassignment statistics

Figure 20: Reassignment of an incident across multiple support groups for finding a solution

 Page 30 Zurich University of Applied Sciences

there are multiple groups attached to one service, but for the sake of this example
we assume that there is only one group. The support group of the ebanking ser-
vice will get notified via e-mail and the ticket will pop up in their queue. Now they
will try to resolve this ticket. Unfortunately, they can also not get the issue sorted
out. They will again forward the ticket to another team. This might be the actual
development team, the database team, the server team or any other team that
they suspect could be helping them out in finding the answer how to resolve the
incident.

 Statistics and Data Model for Service Groups

The data model for service groups and services looks as follows:

Most of the time the ticket ends up with the default support group of its corre-
sponding service or the responsible service desk. About 70% of tickets can be re-
solved by the service desk that initially communicates with the customer. Of the
remaining 30% nearly 60% can be closed by the default group of the service. Alt-
hough this number can be quite misleading, which is explained in the following
Chapter 4.3.

Overall, there are a lot less support groups than there are services. So there are
central support groups that take care of more than one service. What can be seen
from the example above is that the support groups can be location-dependent,
such as when something physically has to be done. In those cases a so-called
“onsite support group” is responsible

Figure 21: Service to support group data model

 Page 31 Zurich University of Applied Sciences

 Support Group Data

Support group classification poses different challenges. For once, it is tough to
evaluate the support group just based on the initial problem description. As seen
in the service classification task the ticket title and description are rather short and
concise. In some cases technical expertise from multiple teams is needed to actu-
ally know where the problem lies, which then provides the information who can ac-
tually deal with the ticket. Additionally, there can be multiple components that mal-
functioned, so multiple teams have to do something. Sadly, both is not really re-
flected in the data. So in order for the creator of the ticket to know which support
group could be responsible, he already needs to know which component of the
service is really affected. This is basically what would be needed to be able to
evaluate the proper group.

As shown in Figure 22 the ticket gets passed on to different groups. Each group
will try to resolve the issue and document in the ticket what they have done. Until
one group can fix the root cause of the problem. They will then resolve and close
the ticket leaving a resolution. This all hints towards more than one target class –
so a multi-label classification. The main problem here is that it is impossible to
know which of the many support groups actually contributed to the solution.
Sometimes as much as 15 support groups can be in the history of a ticket. Alt-
hough there are activities logged during the lifecycle of a ticket it is maintained
very inconsistently: Some support teams mention when they have done something
in the activities, others just forward the ticket with no mention if it was assigned
wrongly or if they could have actually helped towards finding the solution.

Another tendency that can be seen when visualizing the data of the last 2-4 reas-
signment steps is the forth and back from L3 to the L2 groups. So from a special-
ist group back to an L2 group, which is considered an in-depth technical support.
This behavior happens because of three reasons:

Figure 22: Reassignment of tickets for information/verification purposes

 Page 32 Zurich University of Applied Sciences

• Verification: The specialist group does not want to close the ticket them-
selves until having another group’s verification whether the solution actu-
ally worked.

• Knowledge transfer: L3 wants to keep the L2 in the loop or to let them
know in the future how to deal with such a situation.

• Communication: Closely ties in with the knowledge transfer. L3 does not
want to close and inform the client because the main communication al-
ready went through the L2.

Unfortunately, again this is not done consistently and depends on the support
group or even the person handling the ticket within the team. So in the end I de-
cided to just make a classification against the group that actually closes the ticket.
Because this is the most reliable information that is available. At the very least
that group has a good idea who can solve the ticket.

 Data Preprocessing

Although it is more or less the same data as from the service classification task a
lot more data preprocessing had to be done. What we are interested in is the title
and description of the initial inquiry because this is our input data. But our target
variable shifts from service to the so-called support group or ‘closing group’. This
is the group that most of the time also resolves or closes the ticket or as men-
tioned above at least knows who can. So to know who really was able to handle
an issue the tickets need to be combined as illustrated below, also because one
issue can be linked to multiple tickets. As we are still interested to do a prediction
on the initial title and description we take wherever we have an interaction linked
to a ticket and just use the closing group of whoever could resolve it.

The initial results achieved with the CNN from the service classification were so
poor in accuracy (62%) and with a macro F1-score across all classes of 0.35 that I
had to change data preprocessing. After conducting the confusion matrix and

Figure 23: Needed merging of data to evaluate closing group of an initial interaction

 Page 33 Zurich University of Applied Sciences

looking further into examples of bad predictions it was clear that many groups are
location dependent. So only <title> + <description> was not enough to do a pre-
diction. For instance, the company does have multiple service desks, it has differ-
ent on-site teams that replace or set up hardware. Sometimes there are even dif-
ferent teams at the same location that are in charge of supporting similar prob-
lems (some form of very important person support). So the location as well as the
department of a user matters who closes the ticket. This is also information that is
initially available when opening a ticket. Therefore, it is viable to use this addi-
tional piece of data. This information was concatenated and added in the following
way:

<title> + <location of user> + <department of user> + <full description>

date of export October 2020

number of tickets (interactions and incidents combined) 475’099

average number of words per ticket 26.9

median number of words per ticket 21

minimum number of words in ticket 11

maximum number of words in ticket 1’496

number of different affected services (classes) 208

vocabulary size in collection 20’414

After the filtering as depicted below, there are 208 support groups/classes left.

Table 14: Statistics of data for support group classification

Figure 24: Data preprocessing for support group classification

 Page 34 Zurich University of Applied Sciences

 Baseline Models

Establishing a baseline model is done by a logistic regression using the sklearn
package [14]. Tf-idf tokenizer is configured without a vocabulary limit.

The following results were achieved:

Model Logistic Regression

Accuracy 0.758

Macro F1 score 0.425

Weighted F1 score 0.732

 Network Types used

As CNNs proved to be best suited for the data in the past use case only a CNN
was trained on the task. The output layer was adjusted to the number of classes,
which is the number of support groups, so 208.

 Results of Assignment Group Classification

Training time per epoch was 227 seconds.

Best results achieved (in bold) in terms of validation accuracy and loss:

epoch accuracy val_accuracy loss val_loss

3 0.8653 0.8291 0.4458 0.5767

Validation loss starts going up already after the 3rd epoch. The best validation ac-
curacy and validation loss are achieved both on the 3 rd epoch.

Table 15: Results baseline model for support group classification

Table 16: Results of CNN for support group classification

Macro F1-score 0.475

Validation accuracy 0.832

Weighted Average F1-score 0.825

Table 17: Class report support group classification

Figure 25: CNN training – accuracy/loss development over seven epochs for support group classifi-

cation

 Page 35 Zurich University of Applied Sciences

 Discussion of Results

Considering the data quality I did not expect miracles. The main problem is that
the process is not followed consistently: Some support teams close tickets them-
selves, some forward them for verification, others even keep the ticket and start
resolving the incident offline in direct collaboration with the corresponding teams –
there are many variations, which are unfortunately not reflected in the data. This is
also visible on the distribution of the F1-scores per class in the histogram in Fig-
ure 26 down below. 46 classes get an F1-score between 0 and 0.1 meaning many
bad predictions. Although the question here arises whether those were in fact re-
ally the ones finding the solution to the ticket. But the same could be asked about
the good predictions as well. So because the different handling of tickets through-
out the company interpreting on this level is purely speculative.

Taking a closer look at the mentioned 46 classes that get especially bad predic-
tions reveals: they all have very few samples, between 20 and 250 records, with
an average of 52 tickets. Looking at individual tickets from those classes espe-
cially the ones with 10-20 words really poses the question, if this task is actually
solvable with so little information. In addition, the way how certain services are or-
ganized also makes the task harder: Some services just use one assignment
group and every problem seems to get solved in that domain. These are services
that have little dependencies towards other technological stacks and therefore
also require no help from the support group that represents the database adminis-
trators or the server support teams. While other services have a much higher
granularity. The latter manifests in seeing almost identical initial problem descrip-
tions getting solved by different teams.

The good news is that when expanding the scope of the prediction towards the top
4 support groups with the highest probability then the validation accuracy climbs
to 96% and the macro F1-score also goes up to 0.85. So even though the model
fails at predicting the correct support group, it succeeds in providing a valid and
good selection of viable results.

Figure 26: CNN distribution F1-scores across all classes of Support Group Classification

 Page 36 Zurich University of Applied Sciences

The best use of the predictions is most likely for the service desk to evaluate
whether they can solve a user issue themselves or if they need to escalate it to-
wards another support group. This is shown in the class report as well. All the L1
service desks from the different countries/cities have a high F1-score and an ex-
ceptionally high precision:

Support group Precision F1-score

L1 Service Desk Zurich 0.949 0.928

L1 Service Desk Mumbai 0.937 0.913

This feature could be useful in two cases: First for new employees in the service
desk that do not know if the task is in their domain and whether they can provide a
solution to the caller. If another group is shown in the prediction, they know that
they most likely have to escalate and forward the ticket to another support group.
Second for routing tickets that get generated via an intranet form or a chatbot. In
this case, the ticket can get routed to the service desk, if the model predicts that
they can solve it, otherwise the service classification prediction can be used and
the default group of that service can take care of it immediately.

Another approach of tackling this problem could be to make use of information
that is available in the ticket history. Every ticket has a log where people write
what they have done and why they forwarded the ticket to another group. But this
goes against the initial idea of trying to support the service desk because they will
not have this information available when someone calls them with a problem.

Even though the accuracy was rather low and the macro F1-score was even
worse, service desk did not lose their interest in the support group prediction.
Even the opposite is true. Having it available in production was their explicit wish.
For them having a probability ranked list of possible support groups is already
good enough. At the point of writing this requirement could not be fulfilled, how-
ever it is planned to release the feature in the production system in March 2021.

Table 18: L1 group predictions results from support group classification

 Page 37 Zurich University of Applied Sciences

5. Request/Incident Classification

If an issue from a user cannot be resolved from their first interaction with the ser-
vice desk a request or an incident ticket is generated towards a support group
within the organization. In theory a request is considered a day-to-day activity that
is expected. So for instance it is known that a request has to be opened if you for-
get your user password to reset it [41]. In contrast, an incident is something rather
unexpected. It can prevent the proper use of an application or a service. Worst
case the user cannot do his work because of the incident. Usually in practice the
differentiation whether a request or incident is created seems to depend on the
perception of the agent. Everything that is known and identified as a request is
created as such and everything else is an incident. So looking at the data there is
a fair number of incidents that should have been requests. Another effect that can
be observed is the sense of urgency. Inquiries of clients, who are emotional or
higher management are more likely to be escalated as incidents.

The differentiation between incident and request is necessary for multiple rea-
sons. Most notable differences between the two are type as well as frequency of
notifications and the fact that incidents can cause a service-level agreement
breach. First the difference in notifications: Requests remain in the ticket queue of
the support group. The people in the group get notified after creation and again af-
ter a while via e-mail that there is an item pending. Incidents if not resolved within
a certain time frame can trigger additional notifications such as text messages.
These are sent to the phone of the person on duty. If a team has support hours
through the night the person on duty receives an automated text message. Not
only the system but also the organization treats incident notifications as such. If
there is an incident placed towards a support group that could possibly resolve an
interruption the emergency response team can dispatch a call to the incident
owner support group even during nighttime (given they have support hours during
the night). If an incident is not dealt within a timely manner a breach in the agreed
service level can occur. This can have an impact on the availability of the affected
service as well as other systems depending on it. Maybe even causing financial
damage to the organization.

Additionally, there is also a measurement on each incident how much time has
passed since it was opened. Service level management reports on those interrup-
tions. The time is calculated that has passed since the incident was opened, until
it was resolved.

As incident are so important the main focus of the request/incident classification is
really to evaluate, if something is an incident or not. Therefore, a simplification is
made here: interactions without an escalated request or incident are also treated
as requests.

 Data Preprocessing

In contrast to the service and support group classification this is not a multi-class
classification but a binary classification between incidents and requests. The inter-
action tickets get an additional column based on their related record, if they have
generated an incident. Also, all the steps included that geared towards eliminating
classes with erroneous ticket assignments (done through excluding services with
less than 10 tickets) and excluding retired services can be omitted. This data can
now be included. Even though it would be misleading for service classification this
additional data can now be used to distinguish between incident or request. This
results in the following data preprocessing:

 Page 38 Zurich University of Applied Sciences

As with the previous two use cases only the initial title and description of the inter-
action ticket and the standalone incidents are used. The labels to train the network
are either “incident” or “request”.

date of export November 2020

number of tickets (interactions and incidents combined) 663’893

average number of words per ticket 29

median number of words per ticket 24

minimum number of words in ticket 11

maximum number of words in ticket 1486

number of different affected services (classes) 644

vocabulary size in collection 30’207

The data is very similar to the service classification except for the service count,
which is slightly higher because none of them was removed.

 Baseline Model

Establishing a baseline model is done by a logistic regression using the learn
package [14]. The tf-idf tokenizer is configured without a vocabulary limit.

The following results were achieved:

Model Logistic Regression

Accuracy 0.903

Macro F1 score 0.902

Weighted F1 score 0.904

Table 19: Statistics after data preprocessing for request/incident classification

Table 20: Results baseline models request/incident classification

Figure 27: Data preprocessing of request/incident classification

 Page 39 Zurich University of Applied Sciences

 Network Types used

As the data is more or less the same as in the service classification use case only
a model with the embedding and the convolutional layer was trained. I used the
simpler of the two CNN models as it trains faster, fewer epochs are required and
the results are almost identical. The only layer that was changed is the output
layer, which now consists of two neurons: One for incident, the other for a request.

 Results of Request/Incident Classification

The curve started to flatten out for validation accuracy at around four epochs. The
validation loss started to go up at around three epochs, but the validation accu-
racy slightly improved.

Training time per epoch was around ~226 seconds.

Best results achieved (in bold) in terms of validation loss and validation accuracy:

epoch accuracy val_accuracy loss val_loss

2 0.9272 0.9272 0.1488 0.1731

4 0.9863 0.9330 0.0465 0.2032

This brings us to the following summary:

Macro F1-score 0.932

Validation accuracy 93.3%

Weighted Average F1-score 0.933

➔ Macro F1-score is at 0.932

Table 21: Results from CNN for request/incident classification

Table 22: Result summary of CNN for request/incident classification

Figure 28: CNN training accuracy and loss development over six epochs for request/incident

classification

 Page 40 Zurich University of Applied Sciences

 Discussion on Results of Request/Incident Classification

The results were surprisingly good. Looking at the data I did not expect that it was
possible to achieve such a clear distinction between requests and incidents. I sus-
pect that this is possible due to the high recurrence of certain requests. This is re-
flected partially in the higher precision of predicting requests.

Class Precision

request 0.943

incident 0.920

Another reason why it works so well is that there are certain consistent language
patterns within incidents that certainly help to distinguish the two classes. While
trying a few predictions myself to see how the model behaves/classifies it seemed
to work pretty well. Here are a few examples:

input output/prediction

“user cannot log into application x” “request”

“user cannot log into application x error screen” “incident”

“user needs to reset password error screen” “request”

“applications shows wrong numbers” “incident”

“screen shows odd numbers, which cannot be right” “incident”

“need a new laptop, keyboard is broken” “request”

The shown probabilities also started to shift more towards the incident class
whenever terms like “error screen” or certain HTTP error codes such as “40x” or
“50x” were added to the description. Which is an indication that the model has
learned the right features. The only behavior of the system I am not sure of is the
tendency to predict an incident whenever there are negative sentiments in the
ticket. For example, if I add “user is angry” to any given input the probability of it
being incident is rated higher. Though it is not as strong as any of the above men-
tioned HTTP error codes or any power sequences such as “displays error mes-
sage on screen” or “user cannot work”. Often these phrases immediately tilt the
prediction towards incident. The latter example though shows the stability of the
model. When combining for example “password needs to be reset user cannot
work and is angry” a request is predicted – not an incident.

Another idea would be to split the request class into “closed by service desk” and
“request”. This approach could give the service desk agent an even better idea
what to do with the ticket. As already considered in the discussion of the previous
chapter this would also enable automated routing of tickets. Generated tickets via
intranet form, e-mail or chatbot will be sent to service desk directly, if they can be
resolved by them. And if it cannot be closed by the service desk it will be sent au-
tomatically to the corresponding default group of the service. As the service desk
overall expressed little interest in this feature the effort was not made to improve
towards a version that could automatically route the tickets based on the initial de-
scription.

Table 23: Class precision of request/incident classification

Table 24: Examples of how tickets get classified into "request" or "incident"

 Page 41 Zurich University of Applied Sciences

6. Transformer Models and Transfer Learning

In recent years models based on the transformer architecture are outperforming
CNNs and LSTMs in natural language processing (NLP) tasks. This is reflected in
popular language benchmarks such as GLUE [42]. Even outside the NLP-realm
transformer models are gaining traction [31]. This chapter briefly describes how
transformer models have evolved from LSTMs, how they can be used and how
well a basic transformer model performs on the service classification task.

 Attention

Attention mechanisms were introduced as an improvement of the encoder-de-
coder-based models used mostly in language translation systems. This was first
proposed in the paper “neural machine translation by jointly learning to align and
translate” from Bahdanau et al. and Luong et al. [43]. And was intended to be
used in RNNs/LSTMs. The basic idea was to not only take the input words into ac-
count by a single context vector. This approach turned out to be the bottleneck of
those models [44]. Relative importance should be given to each word. In essence
this mechanism allows the network to learn to which parts of the input text to pay
attention to [45]. So the model can focus on the relevant parts of the input se-
quence. Attention can be implemented in different ways. How attention works in
RNNs is explained and illustrated in an excellent blog post by Jay Alammar “Visu-
alizing A Neural Machine Translation Model” [44].

The paper “Attention is All You Need” published in December 2017 [46] refined
how to implement attention. This is accomplished by a new architecture that uses
attention to also improve the training time of models [47]. The concept is called
multi-headed attention. This was the basis for modern transformer models, which
departed from the RNN structure entirely. The latest milestones in development of
NLP models, such as BERT, are based on this architecture. BERT in fact is basi-
cally a trained transformer encoder stack [48]. In contrast, there is GPT-2/GPT-3
that focuses on the decoder stack. Chapter 7 will cover BERT in more detail.

 Transformer Models and Language Models

For a long time convolutional neural networks (CNNs) and long short-term
memory (LSTMs) have produced the best performing models when it came to
NLP. Starting with BERT in 2018/2019 the trend seems to go more towards trans-
former-based models. One of the most famous language models that also gets a
lot of coverage in the media is GPT-2, which is at its core also a transformer
model. Transformers are especially good at modelling language. “A language
model is giving us a probability distribution over a sequence of words or tokens.”
[49]. This means that a language model of English will give us the probabilities of
the words that could follow a sequence. So for instance for the sequence: “I am
feeling <word>” the language model could predict “good” with 15%, “tired” with
10% and so on. Such a model can be used for many different tasks:

• Summarization
• Language Translation
• Question Answering
• Chatbots
• Speech Recognition
• Classification

This probability modelling of language has already been done with Markov chains
[50] – so without neural networks. That approach had troubles handling long-term
dependencies on a computational level. RNNs and their variations face a similar

 Page 42 Zurich University of Applied Sciences

limitation at handling longer sequences. Even though they use some kind of
memory (a context vector representing the previous words) as already explained
in a previous chapter they still suffer from a vanishing gradient problem.

Transformers handle this by using attention. There is a technique used that de-
cides which part of the input to pay attention to, which parts to use and which
parts to ignore [49]. The suggested model in the paper looks simple, but going into
detail reveals a very sophisticated system using keys, queries and values. It no
longer depends on recurrent structures. The neural network learns to pay attention
to the important parts of the sentence and uses them. So it looks only at the rele-
vant things. It is no longer a serial model such as LSTMs were, but can be paral-
lelized, which is computationally favorable. This is also reflected in Chapter 6.4.
How transformers work in detail is illustrated and explained in another blog post of
Jay Alammar called “The Illustrated Transformer” [47]. Since the initial architec-
ture was proposed variants of different transformer models have appeared. A few
of them are discussed in Chapter 7.2. Development is still ongoing and one of the
most recent and latest developments in this field is GPT-3, which was released on
June 11th 2020 [51] and has received a lot of attention.

 Service Classification with a Transformer Model

To benchmark against the other models in Chapter 3 the following basic trans-
former model proposed specifically for text classification by the makers of Keras
[52] was trained from scratch. Shape of input layer and number of neurons in out-
put layer were adapted to the input vector and number of classes. In contrast to
the proposed model by Keras the following changes were made to enhance per-
formance:

• Embedding dimension and hidden layer size were scaled up
• GlobalAveragePooling was replaced by a GlobalMaxPooling layer
• Dropout was removed
• Dense layer before output layer was removed

Figure 29: Network with multiple-heads transformer layer

 Page 43 Zurich University of Applied Sciences

Best Transformer Model

Training time per epoch was 258 seconds.

Best results achieved (in bold) in terms of validation loss and validation accuracy:

epoch accuracy val_accuracy loss val_loss

18 0.9471 0.9017 0.1801 0.4133

20 0.9578 0.9045 0.1440 0.4186

➔ Macro F1-score 0.72

 Result Discussion of Transformer Model

The suggested transformer model trains significantly faster than any of the other
models that were tried in Chapter 3. This is due to the ability of processing the in-
put in parallel. In contrast to the LSTM, which needs to process all previous steps
first until the end is reached. Though it does not reach the performance of the
other models – as can be seen in Table 26.

network type total training time number of epochs reached accuracy

CNN ~76 minutes 8 0.9204

CNN 2D ~678 minutes 37 0.9211

Bi-LSTM (word) ~140 minutes 7 0.9122

Bi-LSTM (char) ~419 minutes 20 0.9045

Transformer ~25 minutes 6 0.9083

In contrast to the used model above, BERT and other high-performance trans-
former models have multiple transformers blocks stacked on top of each other . In-
stead of training from scratch they are also pretrained unsupervised onto a very
large text corpus. This is how the language is learned. I am going to explore these
options in the following Chapter 7.

Table 25: Results from transformer network

Table 26: Comparison between transformer model and previous neural networks from Chapter 3

Figure 30: Transformer training and loss development over eight epochs

 Page 44 Zurich University of Applied Sciences

7. BERT

As of the date of handing in this thesis, 31st of January 2021, the majority of top
scoring models in the GLUE benchmark [42] are based on the architecture of
BERT. That was also the reason why I tried multiple versions of different BERT
models for the most important of my use cases: the service classification.

 Overview BERT

BERT stands for “Bidirection Encoder Representation from Transformers”, it basi-
cally stacks multiple encoders of the proposed transformer model [46]. BERT can
be used to learn many different tasks such as translation, question answering,
sentiment analysis, text summarization and many more. In fact, every problem
that relies on natural language understanding. BERT gets pretrained on a specific
language to understand it, thus training a language model. Then BERT gets fine-
tuned onto a specific task. Training BERT happens in two steps, pretraining and
fine-tuning:

7.1.1. Pretraining BERT

The goal of the pretraining is for BERT to learn a specific language. This step is
done unsupervised. Two tasks are involved: Masked Language Modelling (MLM)
and Next Sentence Prediction (NSP). In MLM certain words are masked and dur-
ing pretraining the model tries to predict those words. In NSP the model tries to
predict the next sentence that is going to follow. Both tasks run simultaneously.
This is how BERT learns the language.

BERT base is a very large model with about 110 million parameters [53], which re-
quires a lot of computational power. Luckily, BERT was already pretrained by
Google on two large text corpora (BooksCorpus and English Wikipedia). It took 16
TPU (Tensor Processing Unit) chips, which computed for four days to complete
the training [53]. The whole pretrained model can be downloaded and used for
various tasks. This is true for many different BERT models, which are pretrained
on large datasets by someone and the resulting language model then can be used
for fine-tuning. Different variants of BERT use other pretraining strategies, which
is covered briefly in Chapter 7.2. There are all sorts of different pretrainings con-
ducted for different purposes and in different languages. These are also published
and can be downloaded. One site that offers those models is for instance from the
creators of the Python transformers package (Huggingface) [54]. This is consid-
ered one of the best things about transformer models and is called transfer learn-
ing because these pre-computed models can be used for various downstream
tasks.

7.1.2. Fine-Tuning BERT

Fine-tuning BERT has the same meaning as training it on a downstream task. Ba-
sically, an output layer is added to the pretrained language model. In the use case
of service classification I only added the output layer, which consists of 312 neu-
rons (each represents one of our service classes). In contrast to the unsupervised
pretraining this step now makes use of the labels and is therefore supervised. The
parameters of the pretrained BERT core model are now just fine-tuned and only
the weights of the added layer are randomly initialized and trained from the start.
Although BERT is a very large model training is therefore fast. Also in contrast to
pretraining only a small dataset is needed to do the fine-tuning. As little as 500-
1000 trainings samples can be sufficient [55].

 Page 45 Zurich University of Applied Sciences

 Successors of BERT

Even though BERT is of the writing of this paper only about two years old, other
transformer models have started to dominate the leaderboards of language under-
standing benchmarks such as SQuAD [56] or GLUE [42] from large enterprises
like Facebook, Microsoft, Huawei, Google, Alibaba and many more. Most are vari-
ants of BERT, e.g. ALBERT or DistilBERT. These can be considered as a “light”
version of BERT. ALBERT even stands for “A Lite” version of BERT [57]. It uses
parameter-reduction techniques to have a better scalability and overcome memory
limitations. “This allows the model to achieve better behavior with respect to
model degradation.” [57]. DistilBERT is a distilled version of Base BERT [58] to
achieve better inference speed while preserving 97% of BERT’s performance.
RoBERTa from Facebook AI is one of the most popular versions. The team basi-
cally reproduced what was done during the development of BERT and optimized
the model which resulted in “A robustly optimized BERT pretraining approach” or
short RoBERTa [59]. This allowed RoBERTa to outperform BERT on many tasks.
In contrast to other BERT models RoBERTa uses a byte pair tokenizer instead of
wordpiece encoding.

Also worth mentioning is ELECTRA one of the latest pretrained transformer mod-
els by Google. Most other BERT-like models were trained on larger datasets or
had more parameters. ELECTRA in contrast uses less computational power and
less training time and still outperforms BERT [60].

In fact, there are so many models with promising results built on the transformer
architecture that it is easy to get lost: StructBERT, ERNIE, XLNet, XLM, Long-
former, XLM-RoBERTa, ELECTRA and many more. They mostly differ in numbers
of parameters, how they conduct pretraining (e.g. word masking vs sentence pre-
diction vs generalized autoregressive), the amount of data the language models
were pretrained on and the way they tokenize (byte pair vs wordpiece encoding).

 Tokenization BERT Variants: Byte Pair vs Wordpiece En-
coding

Some implementations of BERT use a different tokenization approach. Wordpiece
encoding is the most common among the BERT models. Byte pair encoding is the
one being used prominently in GPT-2/GPT-3, but is also used in ALBERT and
RoBERTa.

Byte pair encoding takes the most occurring byte pair in a word. This pair will be
replaced by a token representing that specific sequence. This process can be re-
peated multiple times. The specific algorithm used is described in the paper “Neu-
ral Machine Translation of Rare Words with Subword Units” [61]. How these se-
quences will be combined depends on how many times they appear in the used
text corpus.

Wordpiece encoding is similar to byte pair encoding. The original BERT was built
by using wordpiece encoding. This form of tokenization breaks the word down into
multiple subwords. The main difference is that it is forming the new subword by
likelihood, but not the next highest frequency pair [62]. The precise algorithm was
not made public [63].

 Results of Fine-Tuning on Downstream Tasks

As an initial step, I fine-tuned various models for three epochs for the service clas-
sification use case from Chapter 3 to see how they perform. I chose three epochs
because many tutorials that I looked up reached excellent results within that
amount. I used the standard vocabulary of each model. The wrapper used for the

 Page 46 Zurich University of Applied Sciences

purpose of training is simpletransformers [64]. The following arguments were
used:

• num_train_epochs = 3
• do_lower_case = True
• evaluate_during_training = True
• save_eval_checkpoints = True
• and adjusted the num_labels = 312

All models scored between 90%-91% in validation accuracy after just three
epochs. But there are major differences in the macro F1-score. Especially com-
pared to the best CNN model with the embedding layer that previously scored the
highest:

One of the reasons why the neural network was received so well for the service
classification use case is because it understands the domain-specific language it
is used in: Internal project descriptors, application names and all sorts of abbrevi-
ations. The trained models do not have the “knowledge” (embeddings) of those
strings. The effect of having a domain-specific vocabulary and training on custom
datasets was also observed in other papers such as SciBERT [65], FinBERT (fi-
nancial service corpus), BioBERT (biomedical literature corpus), patentBERT (pa-
tent corpus) and many more. So my first attempt was to add the specific words at
the beginning of the vocab.txt of the DistilBERT model. In the following way:

1. Extracted most common words that are in the dataset
2. Compared them to the vocab.txt file and extracted the ones that do not oc-

cur in the vocab.txt
3. Manually cleaning of the resulting set: Removed words with spelling errors,

standard language terms, which can be built using the wordpiece model
and removed too specific words (such as names from employees or host-
names)

Figure 31: Macro F1-score comparison between models based on BERT and CNN

 Page 47 Zurich University of Applied Sciences

4. Included the domain specifics words at the [unused] spots at the beginning
of the vocab.txt file

As an alternative there would also be the option of adding the words at the end of
the vocabulary file.

In the official documentation of BERT there is no mention of how these “[un-
usedX]” tokens are treated. But there is a discussion in the official GitHub of
google-research of the BERT project [66]. If added, the “[unused]” tokens get ran-
domly initialized. The recommendation by the person from googlebrain answering
that question is to just use the existing wordpiece vocabulary [66]. So, just to run
fine-tuning and like that the words get learned. As there are no out-of-vocabulary
words with the wordpiece tokenization approach.

As a comparison, I trained two DistilBERT models: One with standard vocabulary
and the other with my own vocabulary – both for five epochs. Then I trained as
long as validation accuracy and macro F1-score kept improving. For both this was
achieved on epoch 13.

The results of the DistiBERT fine-tuned model with custom vocabulary at three
epochs was much worse than when using standard vocabulary. At five epochs the
DistilBERT model with the custom vocabulary performed on the same level as the
standard one at five epochs. I proceeded fine-tuning until 13 epochs, where the
model with the custom vocabulary peaked at a macro F1-score of 0.7. The Distil-
BERT model with standard vocabulary only reached 0.68.

 Benchmarking DistilBERT against RoBERTa

RoBERTa outperformed ALBERT, DistilBERT and ELECTRA when fine-tuning on
the standard language model towards classifying services with just the basic vo-
cabulary. Similar results are reflected in the GLUE benchmark, where it outper-
forms BERT and XLNet [67]. “RoBERTa removes the next sentence prediction
(NSP) and introduced dynamic masking so that the masked token changes during
the training epochs. Larger batch sizes were also found to be more useful in the

Figure 32: Comparison of standard vs. custom vocabulary DistilBERT at different epochs

 Page 48 Zurich University of Applied Sciences

training procedure” [68]. Additionally, RoBERTa was trained on more data than
the initial BERT model [68].

I continued in training a model with a distilled version of RoBERTa: DistilRoBERTa
base model. At 13 epochs it peaked at a macro F1-score of 0.72. In Figure 33 a
comparison of the macro F1-score between the best fine-tuned models and the
trained CNN with my own embeddings:

RoBERTa outperforms both DistilBERT with standard and custom vocabulary by
0.04 and 0.02 in macro F1-score. Although it still performed worse by 0.03 than
the CNNs from Chapter 3.

 Additional Pretraining of RoBERTa Language Model

I already tried to add the domain-specific words by adding them to the vocab.txt.
Another way to learn new words and embeddings is further pretraining of the lan-
guage model. There are two ways of continuing pretraining of the language model:
domain-adaptive and task-adaptive [69]. Domain-adaptive pretraining refers to fur-
ther training of the language model in the same or a similar domain, e.g. news,
movie reviews or science publications. Task-adaptive pretraining means further
training the language model on the specific task’s unlabeled data that the fine-tun-
ing will be made on. Both lead to performance gains according to a paper “Don’t
Stop Pretraining: Adapt Language Models to Domains and Tasks” [69]. The larg-
est portion of data I have is on the task itself, which consists of 33.3M words from
the ticket dataset. Only about 1.7M stem from the requirements tool and the wiki
help page. Therefore, we consider the following rather a task-adaptive pretraining.
As usual the data was split into training and validation set.

I further pretrained the language model of RoBERTa for 15 epochs. This resulted
in a loss of 0.92 on the corresponding test set. Additional 5 epochs of pretraining
only slightly lowered the loss to 0.89. This is where I stopped. This customized
language model was then fine-tuned for the service classification task. I trained for

Figure 33: Comparison between models in terms of best macro F1-score achieved after fine tuning

for Service Classification with BERT models

 Page 49 Zurich University of Applied Sciences

14 epochs to benchmark directly with the fine-tuned standard language model. Af-
ter 14 epochs a macro F1-score of 0.754 was achieved. The validation accuracy
was now at 0.925 – higher than any other model so far. In additional epochs the
validation accuracy stagnated and the validation loss kept increasing.

Even though the difference in validation accuracy is small the classification model
with the further pretrained language models performs slightly better than the one
with the standard language model. The difference though is in the macro F1-
score: It performs 0.03 better than the model trained on the standard language
model. Moreover, there is even a slight performance increase over the CNN:

The best-performing CNN capped at 0.75 and the RoBERTa model with custom
language model reached 0.754 on epoch 14.

 Training a new Language Model from Scratch

The same data that was used to further pretrain the language model is now being
used to build a language model from scratch. I used RoBERTa – so far the best
performing model after further pretraining the language model and fine-tuning on a

Figure 34: RoBERTa comparison of fine-tuned vs standard language model in terms of validation

accuracy/loss development over 14 epochs

Figure 35: Macro F1-score comparison of CNN vs. RoBERTa fine-tuned (stand-

ard LM) and RoBERTa fine-tuned (fine-tuned LM)

 Page 50 Zurich University of Applied Sciences

downstream task. Additionally, I also wanted to try ELECTRA, which is more effi-
cient in pretraining than any other state-of-the-art models such as BERT, RoB-
ERTa, XLNet, ALBERT or T5 [70]. ELECTRA stands for “Efficiently Learning an
Encoder that Classifies Token Replacements” and was release on the 10th of
March 2020. Previous BERT language models were learned mostly on masked
language modelling (MLM). ELECTRA uses replaced token detection (RTD). The
basic idea is to learn the model distinguish between “real” and “fake” input data
[70]. This is described in the following way:

“Instead of corrupting input by replacing tokens with ‘[MASK]’ as in BERT, our ap-
proach corrupts the input by replacing some input tokens with incorrect, but some-
what plausible, fakes. For example, […] the word ‘cooked’ could be replaced by
‘ate’ […]. The pretraining task requires the model (i.e. discriminator) to then deter-
mine which tokens from the original input have been replaced or kept the same. ”
[70]

The settings used in simpletransformers to train the language model from scratch:

• min_frequency = 10
• vocab_size = 35140
• lower_case = True
• everything else was left on default

Both language models were trained for 15 epochs. The data that we have availa-
ble contains only about 35M words: 33.3M from the ticket dataset and about 1.7M
from the requirements tool and the wiki help page. In comparison, BERT Base
was trained on 3’300M words and other models even on much larger datasets. So
we are using only about 1% of the data that was used to create the BERT lan-
guage model.

After training the language models for RoBERTa and ELECTRA I started with the
fine-tuning towards the service classification task:

The following results were achieved:

Model RoBERTa ELECTRA

Macro F1-Score 0.560 0.585

Weighted F1-Score 0.901 0.915

Validation Accuracy 0.903 0.917

Table 27: Benchmark of language models between RoBERTa and ELECTRA (built from scratch)

Figure 36: Fine-tuning on classification task of ELECTRA and RoBERTa comparison (both trained

with a language model from scratch)

 Page 51 Zurich University of Applied Sciences

The promise in regard to ELECTRA seems to hold. With our small dataset ELEC-
TRA outperforms RoBERTa. However, overall in comparison building a language
model from scratch performed much worse than further pretraining an existing lan-
guage model and fine-tuning on the task:

The further pretrained RoBERTa language model fine-tuned on the classification
task clearly outperforms both models that were built by language models from
scratch by almost 0.19 (RoBERTa) and 0.16 (ELECTRA) in macro F1-score.

 Further Pretraining of ELECTRA Language Model

Based on my experience from Chapter 7.7 and the evidence of ELECTRA outper-
forming many other variants of BERT in various benchmarks such as GLUE [64] I
also continued to pretrain the ELECTRA language model for 15 epochs on the
ticket data. The steps as in Chapter 7.4 were reproduced, so it can learn the spe-
cific vocabulary/embeddings of the dataset.

Even though ELECTRA performed better when trained from scratch, when fine-
tuning the model on a downstream task with a further pretrained language model
RoBERTa still outperforms it. Not in terms of validation accuracy, but in the macro

Figure 37: Difference between standard language model, further pretrained language

model (custom LM) and both models built from scratch

Figure 38: Comparison between ELECTRA and RoBERTa with more pretraining on language model

 Page 52 Zurich University of Applied Sciences

F1-score. ELECTRA reached a macro F1-score of 0.718, which was 0.032 lower
than RoBERTa.

 Impact of Stop Words

As mentioned in Chapter 3 leaving the stop words in the dataset with the CNN had
a bad effect on the classification results. Therefore I excluded them. When work-
ing with transformer models such as RoBERTa at some point I left the stop words
in. There was a noticeable positive effect on validation loss when further pretrain-
ing the language model:

RoBERTa Loss without stop words Loss with stop words

5 epochs 1.68 1.63

15 epochs 0.924 0.709

25 epochs 0.885 n/a

There was no significant effect when training those pretrained language models on
the specific classification task:

Also excluding stop words or leaving them in the dataset, which is used to fine-
tune makes no difference in the results nor in the training.

 Achieving the best Results on a Pretrained Model

I used the computing time of the last 10 days in January 2021 before handing in
this thesis to compute one final model. I pushed the best performing transformer
model DistilRoBERTa to its limits:

• 25 epochs task-adaptive pretraining on the language model – without a
split of train and validation: The full dataset of 35M words was used to train
the language model

• 20 epochs further fine-tuning on the downstream task

Training time took about eight days. Further pretraining the language model took
about five days and fine-tuning about three days.

Table 28: Impact of stop words on loss when doing more pretraining on language model

Figure 39: Impact of stop words on validation accuracy and loss when finetuning on downstream

task with RoBERTa and ELECTRA

 Page 53 Zurich University of Applied Sciences

Validation accuracy stagnated at 0.928. The best macro F1-score was at 0.768 on
15 epochs and started to degrade from there. Compared with the previous model
in Chapter 7.6 this means an improvement of 0.014 in macro F1-score.

In summary the following results with the corresponding configurations was
reached:

Model RoBERTa RoBERTa

Version DistilRoBERTa DistilRoBERTa

Size of dataset for further
pretraining

23.45M words 33.5M words

Number of epochs pre-
trained language model

20 25

Number of epochs until
maximum F1-score

14 15

Validation Accuracy 0.924 0.926

Macro F1-score 0.754 0.768

 Discussion of Transformer Model Results

Of the many transformer models I tried only RoBERTa with further pretraining of
the language model and then fine-tuning on the classification task was able to out-
perform the CNN in terms of validation accuracy and macro F1-score. The main
reason why only fine-tuning on a downstream task did not work is seen in other
domain-specific implementations of BERT like SciBERT: The task-specific vocab-
ulary and embeddings are missing in the more generic models. Here are three ex-
amples how words in the ticket dataset are being used within the organization:

Words Meaning in company

“host” IBM mainframe

“client” Workstation of a user

“tev” Day end processing

Table 29: Comparison between service classification models based on DistilRoBERTa and further

pretrained language models

Table 30: Examples on specific embeddings

Figure 40: Best DistilRoBERTa model pretrained 25 epochs and fine-tuned for 20 epochs

 Page 54 Zurich University of Applied Sciences

In contrast to the meanings of these words in the Wikipedia corpus and other en-
cyclopedias, which are being used for building the language models, these words
have a very specific and unique meaning in the organization. These even divert
from the relevance they are being used in Wikipedia articles. Further pretraining
the language models seems to mitigate some of these problems, but when doing
predictions they unfortunately manifest again. With the CNN single application
strings already work to receive the proper service. With the transformer models
more words are needed to get the right class. At the same time these also strug-
gle with the spelling mistakes in the data. In contrast, the CNN has learned those
in the embeddings – at least the ones that occur more frequently.

Comparing the confusion matrices and class scores on the best CNN against the
best fine-tuned RoBERTa model reveal similar results. The deviations occur in
classes with fewer samples (<100). Less available records per class result in a
better macro F1-scores from the CNN. The differences can be up to 0.2 in F1-
score. I would argue again that these results go along with the language model
from RoBERTa missing the embeddings/vocabulary used in those particular clas-
ses. The more samples a class has, the better the transformer F1-scores get. But
it cannot be concluded that the CNN was outperformed in the classes with the
most tickets. Especially in those top 12 classes the performance is almost the
same.

Nevertheless, on validation accuracy state-of-the-art transformer models can keep
up with the best network configurations I came up with in Chapter 3 and even sur-
pass them in macro F1-score by 0.018. Still, I would not put one of the transformer
models into production yet because they seem much less robust in terms of
spelling mistakes and need more words to achieve their performance. They lack
what was described by a service desk agent as the “snappy” performance that the
CNN has: Entering just a few words and the application name already predicts the
right class.

 Page 55 Zurich University of Applied Sciences

8. Help Article Prediction

This is just a short chapter because it was only conducted as part of a proof of
concept. Nevertheless, it shows the possibilities and the potential of also using the
resolution content of a ticket. It also inspired me and others to think about a struc-
tured way how to store the resolution of tickets in the system, which at the mo-
ment is not the case.

 Used Data

Each closed ticket has also a resolution text. This corresponding resolution field is
free text. The content of what is contained in that text box is not verbose in most
cases. Usually, the contained message does not give any indication of what was
done to resolve the issue. Phrases like “was fixed” or “done” occur a lot. At the
same time the quality is also rather poor: Lots of spelling mistakes and sometimes
not even real text. Still, there are cases where there is a wiki article linked. Exem-
plary cases where references are included:

• various password resets
• suspicious e-mail received
• different installation instructions

For such cases service desk agents have written instructions and references in
the ticket resolution to those articles. Therefore, I tried to apply another text classi-
fication.

 Data Preprocessing

First the wiki links were extracted with a regular expression from the free text field
of the resolution. Those references to help articles are our target. For all the tick-
ets, where no link was found, the string “no article” is inserted. I also had to scale
down on the number of years because only about two years ago the first help arti-
cle appears in the dataset. As always the title and description are what is used as
input.

I took the exact same data preprocessing of the service classification. Because of
the shorter time frame there are fewer tickets available. And there are also a lot
less classes: 77 different articles + “no articles”-placeholder, so in total 78 differ-
ent classes.

This leads to very unbalanced classes:

Total number of tickets 449’192

Actual classes (valid articles) 8%

“no article” 92%

 Used Network

Again the simpler version of the CNN as in the service classification was used:

Embedding Layer + CNN layer + GlobalMaxPooling + Output Layer

The output layer consists of 78 neurons representing the articles and the replace-
ment token “no article”.

Table 31: Classes with valid articles against classes with no wiki articles in their resolution

 Page 56 Zurich University of Applied Sciences

 Results on Help Article Classification

After just two epochs the following results were achieved:

Validation accuracy 97.9%

Macro F1-score 0.67

Weighted F1-score 0.97

 Discussion of Results

The results are tempting, however this is not a classification problem. It rather rep-
resents a search problem. It is interesting to see that it works really well in certain
cases, but it is certainly not something that can be put into production. The biggest
problem is with the data quality. How resolutions are being described mostly de-
pends on the individual writing them. There are no guidelines in the company that
specify how many words, the level of detail and in general what has to be noted in
this field when closing a ticket. In many cases, people just write single characters
in the field and close the ticket. Even service desk agents of the same team have
very different ideas of what they should write. Also, for any kind of links there
should be separate fields. Trying to extract the URLs via regular expression lead
to many references being chopped and parts of it were missing.

The only thing that can be deducted from these results is the fact of recurrence in
terms of user requests. Certain things get asked over and over – even by the
same users. Those requests could be clustered, labelled with a sample solution
and provided to the customer for instance via a search or in the form of a chatbot.

Table 32: Result on wiki classification

 Page 57 Zurich University of Applied Sciences

9. Discussion

The possibilities of what can be accomplished with the ticket data are vast. Even
during the last weeks when my focus shifted towards documenting my results, I
was still training new network variants and had new ideas of what could be done
to improve the results:

• Unfreeze layers gradually when fine-tuning [71]
• Different learning rates for different layers [71]
• Concatenating several pooling layers
• Do not exclude all the words that occur less than 10 times in the dataset

such as client account numbers or employee names, but try to use named
entity recognition (NER) and replace them with their category

• Try clustering of the tickets to spot/identify wrongly classified tickets in the
training dataset

Also in terms of new things that could be done with the data:

• Instead of trying to predict a specific support group, try to identify if the
ticket can be solved by a L1, L2 or L3-group. So the person from the ser-
vice desk already has an idea of how to deal with the ticket

• Try to expand on the request/incident classification by introducing a third
class: interaction/request/incident

• Sequence prediction of how a ticket gets routed to support groups based
on its reassignment history and not just the closing group

There is so much that can be done. Ultimately, the limit was the time and espe-
cially resources. A huge factor was the available GPU. Even though I was lucky to
be able to purchase a GPU specifically for this thesis and use it on such a power-
ful workstation (Intel Xeon @ 4 GHz and 256 GB RAM) it was a limiting factor. For
instance, the pure training time of the CNN 2D as described in Chapter 3 was 678
minutes. With all the steps that happen before the network actually can start train-
ing, the time between epochs and also the validation steps at the end, it took
about 14-16 hours (depending on the used parameters). So a grid search was out
of question and a random search took more than a week. Especially the 8 GBs of
VRAM were not enough. Many computations, especially the BERT models had to
be calculated on the CPU. Fine-tuning RoBERTa (DistilRoBERTa) for 16-18
epochs took more than three days. Further pretraining on the preceding language
models between four and six days (depending on the number of epochs and the
model). I could also not further pretrain a language model for more than 25
epochs. Possibly results could even improve.

Nevertheless, the achieved results speak for themselves. A macro F1-score of
0.75 across 312 classes is quite good. Being able to also deploy the model into
production, have it evaluated by the intended user group over six weeks and even
receive a stellar feedback (as outlined in Chapter 9.1) exceeded my expectations.
Ultimately, one of the reasons why the performance was so good is because there
is a lot of repetition in terms of the user inquiries. It might not be obvious at first
glance, but especially looking into the smaller classes reveals many similar re-
quests and incidents. Not always versed in the same way, but at the end they
have the same meaning. Despite the recurrence it is impressive that the neural
networks were able to capture the meaning. I mostly credit that to the embedding
layer. This might be also the main difference between the classical approach of
using logistic regression and why it does not accomplish the same results.

All the project and application names, which are used a lot by the organization,
play a big role when finding the right classes. This is reflected in the predictions. A
single term can be enough to get the right class. As pointed out earlier this is also

 Page 58 Zurich University of Applied Sciences

the reason the standard language models of RoBERTa and ELECTRA could not
achieve the same macro F1-score.

With all the papers and articles I read about BERT, RoBERTa, ELECTRA and
their benchmarks I do believe that the future in text classification is in transformer
models. In fact, with additional pretraining of the language model a better macro
F1-score was achieved. But the DistilRoBERTa model still behaves differently
when doing predictions:

• less sensitivity towards keywords
• more words are needed to get the right class
• less fault-tolerant than for instance the CNN

The last point can be attributed to the CNN learning its own custom embeddings
and therefore the model also learns the misspellings. If it were not for the poor
quality of the tickets, I am confident that the transformer models would do even
better in the macro F1-score and in the predictions. The mix of languages is obvi-
ously also such a limiting factor.

Despite the excellent results and satisfied service desk (as outlined in Chapter
9.1) there is one big general disadvantage of using historical ticket data to find the
corresponding services or support groups: Newly introduced services and support
groups will never even get mentioned in the predictions. In those cases the ser-
vice desk agent has to be aware of the new application/service. To bypass this
limitation manuals or any documentation of new services/applications could be
used as training material for the neural network.

There is the potential of the service classification, support group, incident/request
classification and even the help article prediction being used by a chatbot: For in-
stance creating the tickets in an automated way that omits the service desks en-
tirely, so they can focus on the most urgent requests/incidents. The user issues
could get routed either directly to the corresponding support or the user towards a
wiki article. To achieve this state there is still a lot to do in regard to the process
and how the data gets generated.

 Feedback from Service Desk Team

After testing the service classification functionality together with experienced ser-
vice desk agents in October/November 2020 we integrated the feature into the
ticketing system. In a feedback session on the 12 th of January 2021 the feature of
being able to get a service prediction based on title and description was unani-
mously evaluated as a useful feature. It should be kept in the system and even
further pursued. Additionally, the following points were emphasized:

• apprentices make frequent use of this feature
• results ranked by probability are very useful and are considered during se-

lection of a service
• predictions of the model seem to be consistent with the decisions of the

quality managers of the service desk
• supervisors feel like they have less work in regard to correcting already se-

lected services and can focus on their other tasks
• experienced agents use the model less frequently as they already have a

good understanding of the organization
• better instructions are needed how to use the prediction: many agents

used it as a keyword search rather than typing the full description of the
ticket

 Page 59 Zurich University of Applied Sciences

The wish to implement the support group prediction into the system next was ex-
pressed. Additionally, the system should already make use of the service predic-
tion automatically when tickets are opened through other channels such as e-mail
or intranet forms.

The request/incident classification was deemed dangerous as it might lead to lazy
evaluation of tickets. It was mentioned that this should be something that people
have to learn on the job. Even though it works very well they were not interested
in having this kind of feature in the live-system. The most asked for feature was
having a resolution prediction.

Overall the question posed at the very start of this thesis can be answered with a
yes: The achieved predictions on which service is affected or support groups are
responsible are good enough to be used by the service desk.

 Next steps

Although this thesis ends on the 31st of January, I will continue working on deliver-
ing the best possible solutions to help the service desks route their tickets. Next
steps will involve deploying the support group prediction into production in March
2021. At a later stage, but also in the scope of this use case to enable an overall
improvement of the support group search: I will look into the incident process to
improve the data to figure out who really was involved in resolving a ticket. There
are already some clues in how this could be achieved, and I am looking forward to
exploring those options together with the process owner of the incident process.

I also thought about improving the ticket quality by introducing a minimum number
of words that have to be entered in the description. Almost a fifth of the dataset
consists of tickets, that have less than 10 words in their description field. Although
these tickets are being excluded by the data preprocessing still a lot of training
records are lost.

Besides, I am going to tackle the resolution search. Obviously, this is not really a
classification but rather a search problem or maybe something towards question
answering. I have not looked into it yet, but I suspect that this will be challenging
as the resolution text is even more wavering than the ticket title and description in
terms of quality. Partially this was already explored in Chapter 8. Anyway, there
are many options of using the ticket data. They all lead in the direction of pointing
people towards who can resolve their issue or from the point of view of the service
desk finding them more efficiently.

 Page 60 Zurich University of Applied Sciences

10. Acknowledgements

Many thanks to

• Service desk in Zurich for participating in the feedback sessions and also
evaluating the different features

• Stephen Cryan for supporting with many good ideas/suggestions what else
could be tried to improve the results, as well as creating the React user in-
terface for the service desk and developing the backend that is now used
in production by the ticketing system

• Alan Gross, who helped export the data from the source system, the data-
base views and his insight on the ticket data

• Thomas Glauser for building the user interface in the ticketing system that
shows the predictions and makes them selectable

• Mischa Lehmann for being a precise and critical proofreader
• Jacqueline Schwander for proofreading, for all her love and support

 Page 61 Zurich University of Applied Sciences

11. List of references

[1] ITIL IT Service Management (May 30, 2007), ITIL V3 Glossary v01,
https://www.itsmf.org.rs/sites/default/files/ITILV3_Glossary_English%20v1.pdf
[2] Malihin Dragos (January 9, 2018), How big is ITIL?,
https://www.linkedin.com/pulse/how-big-itil-dragos-malihin
[3] Gartner Research (2021), Gartner Magic Quadrant for IT Service Management
Tools, https://www.gartner.com/en/documents/3991424
[4] Vilino Bob (April 8 2019), How AI is helping the help desk, https://www.comput-
erworld.com/article/3384698/artificial-intelligence-helping-help-desk.html
[5] Devlin Jacob and Chang Ming-Wei (November 2, 2018), Open Sourcing BERT:
State-of-the-Art Pre-training for Natural Language Processing, https://ai.google-
blog.com/2018/11/open-sourcing-bert-state-of-art-pre.html
[6] Hertvik Joe (April 22, 2020), Service Desk TIPS Explained: Ticket, Incident,
Problem, Service Request, https://www.bmc.com/blogs/ticket-vs-incident-vs-prob-
lem-vs-service-request/
[7] DICTIONARY.COM (2020), How Many Words Are There In The English Lan-
guage?, https://www.dictionary.com/e/how-many-words-in-english/
[8] Danilak Michal (March 5, 2020), Language detection library from Google’s lan-
guage-detection, https://pypi.org/project/langdetect/
[9] Barrus Tyler (August 27, 2020), pyspellchecker, https://github.com/bar-
rust/pyspellchecker
[10] Alluin Maxence (September 24, 2019), Embedding for spelling correction,
https://towardsdatascience.com/embedding-for-spelling-correction-92c93f835d79
[11] Teja Sai (June 10, 2020), Stop Words in LNP, https://medium.com/@saiteja-
ponugoti/stop-words-in-nlp-5b248dadad47
[12] NLTK Project (April 13, 2020), Natural Language Toolkit, https://www.nltk.org/
[13] scikit-learn developers (2020), sklearn.model_selection.StratifiedShuffleSplit,
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.Strati-
fiedShuffleSplit.html
[14] scikit-learn developers (2020), sklearn.model_selection.LogisticRegression,
https://scikit-learn.org/stable/modules/generated/sklearn.lin-
ear_model.LogisticRegression.html
[15] Minaee Shervin et al. (January 4, 2021), Deep Learning Based Text Classifi -
catin: A Comprehensive Review, arxiv.org, https://arxiv.org/pdf/2004.03705.pdf
[16] Goldbloom Anthony (2017), What algorithm are most successful on Kaggle?,
https://www.kaggle.com/antgoldbloom/what-algorithms-are-most-successful-on-
kaggle
[17] Goldberg Yoav (October 2, 2015), A Primer on Neural Network Models for
Natural Language Processing, arxiv.org, https://arxiv.org/abs/1510.00726
[18] Brownlee Jason (October 23, 2017), Best Practices for Text Classificatin with
Deep Learning, https://machinelearningmastery.com/best-practices-document-
classification-deep-learning/
[19] Brownlee Jason (October 21, 2017), What Are Word Embeddings for Text?,
https://machinelearningmastery.com/what-are-word-embeddings/
[21] Janakiev Nikolai (2019), Practical Text Classificatin With Python and Keras,
https://realpython.com/python-keras-text-classification/
[22] Zulqarnain Muhammed et al. (November 2019), Efficient processing of GRU
based on word embedding for text classification, Universiti Tun Hussein Onn Ma-
laysia, https://www.researchgate.net/publication/337152954_Efficient_pro-
cessing_of_GRU_based_on_word_embedding_for_text_classification

 Page 62 Zurich University of Applied Sciences

[23] Andres Eva (October 17, 2019), LSTM Neural Network: Example of Text Clas-
sification, https://medium.com/analytics-vidhya/neural-network-lstm-example-of-
text-classification-398e01cab054
[24] Jang Beakchel et al. (July 20, 2020), Bi-LSTM Model to Increase Accuracy in
Text Classification: Combining Word2vec CNN and Attention Mechanism,
Sangmyung University, https://www.mdpi.com/2076-3417/10/17/5841/pdf
[25] https://www.kaggle.com/gilfernandes/riiid-self-attention-transformer
[26] Uysim (2019), Keras CNN Dog or Cat Classification,
https://www.kaggle.com/uysimty/keras-cnn-dog-or-cat-classification
[27] thousandvoices (2017), Simple LSTM, https://www.kaggle.com/thou-
sandvoices/simple-lstm
[28] Maronikolakis Antonis (2018), CNN Baseline Model,
https://www.kaggle.com/antmarakis/cnn-baseline-model
[29] Thomas Christopher (June 9, 2019), Recurrent Neural Networks and Natural
Language Processing., https://towardsdatascience.com/recurrent-neural-networks-
and-natural-language-processing-73af640c2aa1
[30] Phi Michael (August 25, 2018), Illustrated Guide to Recurrent Neural Net -
works, https://www.youtube.com/watch?v=LHXXI4-IEns
[31] Houlsby Neil and Weissenborn Dirk (December 3, 2020), Transformers for Im-
age Recognition at Scale, https://ai.googleblog.com/2020/12/transformers-for-im-
age-recognition-at.html
[32] Rezaeinia Seyed Mahdi et al. (July 23, 2018), Text Classification based on
Multiple Block Convolutional Highways, https://arxiv.org/ftp/arxiv/pa-
pers/1807/1807.09602.pdf
[33] Deriu Jan (2017), Swiss Alps at SemEval-2017 Task 3: Attention-based Con-
volutional Neural Network for Community Question Answering,https://digitalcollec-
tion.zhaw.ch/bitstream/11475/1976/5/106_Paper-1.pdf
[34] Kim Yoon (September 3, 2014), Convolutional Neural Networks for Sentence
Classification, https://arxiv.org/pdf/1408.5882.pdf
[35] Chung Junyoung (December 11, 2014), Empirical Evaluation of Gated Re-cur-
rent Neural Networks on Sequence Modeling, https://arxiv.org/abs/1412.3555
[36] Hochreiter Sepp and Schmidhuber (March 13, 2006), Long Short-Term
Memory, https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
[37] Phi Michael (September 24, 2018), Illustrated Guide to LSTM’s and GRU’s: A
step by step explanation, https://towardsdatascience.com/illustrated-guide-to-
lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
[38] Brownlee Jason (August 27, 2020), How to Develop a Bidirectional LSTM for
Sequence Classification in Python with Keras, https://machinelearningmas-
tery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
[39] Schmidhuber Juergen (2005), Framewise phoneme classification with bi-di-
rectional LSTM networks, https://ieeexplore.ieee.org/document/1556215?re-
load=true&arnumber=1556215
[40] TensorFlow Core v.2.4.0 (December 14, 2020), tf.compat.v1.keras.lay-
ers.CuDNNLSTM, https://www.tensorflow.org/api_docs/python/tf/com-
pat/v1/keras/layers/CuDNNLSTM
[41] Budic Peter (August 3, 2020), Request vs. Incident, https://docs.micro-
focus.com/itom/SMAX:2020.02/PN/pn5e963af98910e3.86380753
[42] GLUE Benchmark (January 16, 2020), GLUE Leaderboard, https://gluebench-
mark.com/leaderboard
[43] Bahdanau Dzmitry et al. (May 16, 2016), Neural Machine Translation by
Jointly Learning to Align and Translate, https://arxiv.org/abs/1409.0473
[44] Alammar Jay (May 25, 2018), Visualizing A Neural Machine Translation Model
(Mechanics of Seq2seq Models With Attention), https://jalammar.github.io/visualiz-
ing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

 Page 63 Zurich University of Applied Sciences

[45] Brownlee Jason (June 30, 2017), Attention in Long Short-Term Memory Re-
current Neural Networks, https://machinelearningmastery.com/attention-long-
short-term-memory-recurrent-neural-networks/
[46] Vaswani Ashish et al. (June 12, 2017), Attention is All You Need,
https://arxiv.org/abs/1706.03762
[47] Alammar Jay (June 27, 2018), The Illustrated Transformer, https://jalam-
mar.github.io/illustrated-transformer/
[48] Allamar Jay (December 3, 2018), Illustrated BERT, https://jalam-
mar.github.io/illustrated-bert/
[49] Computerphile (June 26, 2019), AI Language Models & Transformers – Com-
puterphile, https://www.youtube.com/watch?v=rURRYI66E54
[50] Johnson Vonn N (May 17, 2019), A Lite Introduction to Markov Chain,
https://towardsdatascience.com/a-lite-introduction-to-markov-chains-
eebe239f9147
[51] Brown Tom B (July 22, 2020), Language Models are Few-Shot Learners
https://arxiv.org/abs/2005.14165
[52] Nandan Apoorv (May 10, 2020), Text classification with Transformer,
https://keras.io/examples/nlp/text_classification_with_transformer/
[53] Devlin Jacob et al. (May 24, 2019), BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding, https://arxiv.org/abs/1810.04805
[54] transformers (January 16, 2021), Transformers: State-of-the-art Natural Lan-
guage Processing for Pytorch and TensorFlow 2.0, https://github.com/hugging-
face/transformers
[55] Liu Yong et al. (April 19, 2019), An Evaluation of Transfer Learning for Classi-
fying Sales Engagement Emails at Large Scale, https://arxiv.org/abs/1905.01971
[56] SQuAD (January 16, 2021), SQuAD 2.0 The Stanford Question Answering
Dataset ,https://rajpurkar.github.io/SQuAD-explorer/
[57] google-research (March 28, 2020), ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations, https://github.com/google-research/albert
[58] Hugginface v4.2.0 (2020), DistilBERT, https://huggingface.co/transfor-
mers/model_doc/distilbert.html
[59] Liu Zinhan et al. (July 26, 2019), RoBERTa: A Robustly Optimized BERT Pre-
training Approach, https://arxiv.org/abs/1907.11692
[60] Rajapakse Thilina (May 9, 2020), Battle of the Transformers: ELECTRA,
BERT, RoBERTa, or XLNet, https://towardsdatascience.com/battle-of-the-trans-
formers-electra-bert-roberta-or-xlnet-40607e97aba3
[61] Sennrich Nico (August 2016), Neural Machine Translation of Rare Words with
Subword Units, https://www.aclweb.org/anthology/P16-1162/
[62] ChrisMcCormickAI (November 18, 2019), BERT Research – Ep. 2 – Word-
Piece Embeddings, https://www.youtube.com/watch?v=zJW57aCBCTk&t=174s
[63] Berasategi Ane (August 19, 2020), Overview of tokenization algorithms in
NLP, https://towardsdatascience.com/overview-of-nlp-tokenization-algorithms-
c41a7d5ec4f9
[64] Rajapakse Thilina (January 11, 2021), Transformers for Classification, NER,
QA, Language Modelling, Language Generation, T5, Multi-Modal, and Conversa-
tional AI, https://github.com/ThilinaRajapakse/simpletransformers
[65] Beltagy Iz (September 10, 2019), SciBERT: A Pretrained Language Model for
Scientific Text, https://arxiv.org/abs/1903.10676
[66] jacobdevlin-google from google-research (October 31, 2018), Addmin do-main
specific vocabulary #9, https://github.com/google-research/bert/issues/9
[67] Khan Suleiman (September 4, 2019), BERT, RoBERTa, DistilBERT, XLNet —
which one to use?, https://towardsdatascience.com/bert-roberta-distilbert-xlnet-
which-one-to-use-3d5ab82ba5f8

 Page 64 Zurich University of Applied Sciences

[68] Liu Zinhan et al. (July 26, 2019), RoBERTa: A Robustly Optimized BERT Pre-
training Approach, https://arxiv.org/abs/1907.11692
[69] Gururangan Suchin (May 5, 2020), Don't Stop Pretraining: Adapt Language
Models to Domains and Tasks, https://arxiv.org/pdf/2004.10964.pdf
[70] Clark Kevin et al. (March 10, 2020), More Efficient NLP Model Pre-training
with ELECTRA, https://ai.googleblog.com/2020/03/more-efficient-nlp-model-pre-
training.html
[71] Dai Andrew M. (November 4, 2015), Semi-supervised Sequence Learning,
https://arxiv.org/abs/1511.01432

 Page 65 Zurich University of Applied Sciences

12. Table of Figures

Figure 1: Service desk acts as a single point of contact towards user from the
organization and as a control center for other support groups. 1
Figure 2: Ticket escalation, if the service desk agent cannot immediately resolve
the issue .. 5
Figure 3: Ticket relationship to support groups .. 6
Figure 4: Number of available records per service/class 9
Figure 5: Number of words per ticket count ... 10
Figure 6: Data preprocessing for service classification 15
Figure 7: Samples or records per service/class after data preprocessing 16
Figure 8: Word count per ticket after data preprocessing 16
Figure 9: Single CNN layer configuration that performs best 19
Figure 10: Single CNN training accuracy and loss development over 14 epochs 20
Figure 11: Network with multiple convolutional layers in parallel 20
Figure 12: Multiple CNN training accuracy and loss development over 30
epochs .. 21
Figure 13: Network with Bidirectional LSTM layer .. 22
Figure 14: Bidirectional LSTM (word-level) training and loss development over 7
epochs .. 22
Figure 15: Bidirectional LSTM (char-level) training and loss development over 25
epochs .. 23
Figure 16: Comparison validation accuracy of all trained networks..................... 25
Figure 17: Comparison F1-score between best performing networks for service
classification .. 26
Figure 18: CNN F1-score distribution across all classes of the Service
Classification ... 27
Figure 19: CNN distribution of F1-scores of classes against their sample size 28
Figure 20: Reassignment of an incident across multiple support groups for finding
a solution ... 29
Figure 21: Service to support group data model .. 30
Figure 22: Reassignment of tickets for information/verification purposes 31
Figure 23: Needed merging of data to evaluate closing group of an initial
interaction ... 32
Figure 24: Data preprocessing for support group classification 33
Figure 25: CNN training – accuracy/loss development over seven epochs for
support group classification .. 34
Figure 26: CNN distribution F1-scores across all classes of Support Group
Classification ... 35
Figure 27: Data preprocessing of request/incident classification 38
Figure 28: CNN training accuracy and loss development over six epochs for
request/incident classification ... 39
Figure 29: Network with multiple-heads transformer layer 42
Figure 30: Transformer training and loss development over eight epochs 43
Figure 31: Macro F1-score comparison between models based on BERT and
CNN .. 46
Figure 32: Comparison of standard vs. custom vocabulary DistilBERT at different
epochs .. 47
Figure 33: Comparison between models in terms of best macro F1-score achieved
after fine tuning for Service Classification with BERT models 48
Figure 34: RoBERTa comparison of fine-tuned vs standard language model in
terms of validation accuracy/loss development over 14 epochs 49
Figure 35: Macro F1-score comparison of CNN vs. RoBERTa fine-tuned (standard
LM) and RoBERTa fine-tuned (fine-tuned LM) .. 49
Figure 36: Fine-tuning on classification task of ELECTRA and RoBERTa
comparison (both trained with a language model from scratch) 50

file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946607
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946607
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946608
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946608
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946609
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946610
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946611
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946612
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946613
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946614
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946615
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946616
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946617
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946618
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946618
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946619
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946620
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946620
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946621
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946621
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946622
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946624
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946624
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946625
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946626
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946626
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946627
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946628
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946629
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946629
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946630
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946631
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946631
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946632
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946632
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946633
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946634
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946634
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946635
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946636
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946637
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946637
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946638
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946638
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946639
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946639
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946640
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946640
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946641
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946641
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946642
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946642

 Page 66 Zurich University of Applied Sciences

Figure 37: Difference between standard language model, further pretrained
language model (custom LM) and both models built from scratch 51
Figure 38: Comparison between ELECTRA and RoBERTa with more pretraining
on language model .. 51
Figure 39: Impact of stop words on validation accuracy and loss when finetuning
on downstream task with RoBERTa and ELECTRA ... 52
Figure 40: Best DistilRoBERTa model pretrained 25 epochs and fine-tuned for 20
epochs .. 53

file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946643
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946643
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946644
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946644
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946645
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946645
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946646
file:///C:/Users/micha/Dropbox/master/5_master/4_thesis/master_thesis_data_science.docx%23_Toc62946646

 Page 67 Zurich University of Applied Sciences

13. List of Tables

Table 1: Simplified ticket example from the company's ticketing system 5
Table 2: Dataset statistics before data preprocessing .. 7
Table 3: Examples of automated spelling checks .. 11
Table 4: Text statistics after data preprocessing ... 15
Table 5: Results of baseline models for service classification 17
Table 6: Results from network with single convolutional layer 20
Table 7: Results from network with multiple convolutional layers 21
Table 8: Results from Bidirectional LSTM network (word-level) 22
Table 9: Results of further training Bidirectional LSTM (word-level) - F1-score
improved with climbing loss and stagnating accuracy .. 23
Table 10: Results from Bidirectional LSTM network (char-level)......................... 23
Table 11: Impact of different configurations on accuracy and F1-score 24
Table 12: Comparison between networks for service classification 24
Table 13: Support group ticket reassignment statistics 29
Table 14: Statistics of data for support group classification 33
Table 15: Results baseline model for support group classification 34
Table 16: Results of CNN for support group classification 34
Table 17: Class report support group classification ... 34
Table 18: L1 group predictions results from support group classification 36
Table 19: Statistics after data preprocessing for request/incident classification .. 38
Table 20: Results baseline models request/incident classification 38
Table 21: Results from CNN for request/incident classification 39
Table 22: Result summary of CNN for request/incident classification 39
Table 23: Class precision of request/incident classification 40
Table 24: Examples of how tickets get classified into "request" or "incident" 40
Table 25: Results from transformer network .. 43
Table 26: Comparison between transformer model and previous neural networks
from Chapter 3... 43
Table 27: Benchmark of language models between RoBERTa and ELECTRA (built
from scratch) ... 50
Table 28: Impact of stop words on loss when doing more pretraining on language
model .. 52
Table 29: Comparison between service classification models based on
DistilRoBERTa and further pretrained language models 53
Table 30: Examples on specific embeddings ... 53
Table 31: Classes with valid articles against classes with no wiki articles in their
resolution .. 55
Table 32: Result on wiki classification ... 56

 Page 68 Zurich University of Applied Sciences

Selbständigkeitserklärung

Mit der Abgabe dieser Arbeit versichert der/die Studierende, dass er/sie die Arbeit
selbständig und ohne fremde Hilfe verfasst hat (Bei Teamarbeiten gelten die Lei-
stungen der übrigen Teammitglieder nicht als fremde Hilfe).

Der/die unterzeichnende Studierende erklärt, dass alle zitierten Quellen (auch In-
ternetseiten) im Text oder Anhang korrekt nachgewiesen sind, d.h. dass die vorlie-
gende Arbeit keine Plagiate enthält, also keine Teile, die teilweise oder vollständig
aus einem fremden Text oder einer fremden Arbeit unter Vorgabe der eigenen Ur-
heberschaft bzw. ohne Quellenangabe übernommen worden sind.

Ort, Datum

Unterschrift Studierende/r

