

Special Course (SpC) on MSE Moodle Platform

Title: Dynamic models for building energy management systems

Abbrev: DM4BEM

Credits	3	
Responsible UAS	ZHAW	
Responsible MRU	IEFE	
Course responsible	till@zhaw.ch, Christian Ghiaus: christian.ghiaus@insa-lyon.fr	
Examination	33.3% Written 2h, w/o documents on 29/11/2019 33.3% Written report of group work due on 27/11/2019 33.3% Oral presentation of group work on 29/11/2019	
Face to face period	28/10/2019 - 01/11/2019	
End date (exam)	29/11/2019	
Location	Winterthur	
Course type	Face to face lectures and tutorials (28/10/2019 – 30/10/2019)	24h (27%)
	Accompanied exercises and mini-project (30/10/2019 – 01/11/2019)	24h (27%)
	Autonomous group project (04/11/2019 – 27/11/2019)	42h (46%)
	Total	90h (100%)
Language	English	
Short Content (max. 300 chars)	The course develops skills for modelling and problem solving for coupled heat transfer with special applications to indoor climate control.	
Content and Goals	Face to face Lecture module 1 thermal transfer phenomena: conduction, convection and radiation Lecture module 2 continuous and discrete models thermal networks transforming the thermal networks into state-space and	
	coupling the models	

Special Course (SpC) on MSE Moodle Platform

	Tutorial 1: Read weather data and calculate solar radiation: 1) introduction to linear algebra and tools (MATLAB, Octave); 2) use MATLAB/Octave for reading (weather) data	
	3) calculating the solar load	
	 Tutorial 2: Simple wall 1) physical analysis and mathematical models 2) discretization of mathematical models 3) numerical stability 4) implementation 	
	 Tutorial 3: Simple building in free-running: controlled natural ventilation 1) physical analysis and mathematical models 2) discussion of examples 3) implementation 	
	 Tutorial 4: Simple building controlled by an HVAC system 1) physical analysis and mathematical models 2) discussion of examples 3) implementation 	
	Accompanied individual mini-project: model-predictive controlled single zone building	
	Autonomous group project: Students define their own subject on indoor climate control: - dynamic insulation - dynamic solar protection	
	 control of floor-heating and fan coils influence of set-point setback control of intermittently heated buildings 	
Pre-requisites	Required (undergraduate level): linear algebra, calculus, heat transfer, thermodynamics, computer programming.	
	Desirable (but not compulsory): dynamic systems, control engineering	
	The course is self-contained: all teaching materials are provided as PDF (bibliography, teaching materials and slides for lectures and tutorials).	
Literature	Bibliography - J.A. Clarke (2001) Energy Simulation in Building Design, 2 nd edition, Butterworth Heinemann, ISBN 0 7506 5082 6	

Special Course (SpC) on MSE Moodle Platform

	 G. Strang (2007) Computational Science and Engineering, Wellesley-Cambridge Press, ISBN-10 0-9614088-1-2 C. Ghiaus (2013) Causality issue in the heat balance method for calculating the design heating and cooling load, Energy, vol. 50, pp. 292-301 MATLAB / Octave tutorials (Learn with MATLAB and Simulink Tutorials, www.mathowirks.com and/or Octave Programming Tutorial, en.wikibooks.org 	
Special requirements	 Before the beginning of the course: Every student needs to have access to MATLAB and/or Octave software. Octave software is free and open-source; it can be installed on Windows, macOS and Linux operating systems. MATLAB / Octave tutorials need to be done by each student. Teaching materials need to be downloaded and saved on each computer. 	