

Running Chemical Reactions at Ultra-High Temperatures for Solar Energy Storage

Potential and Challenges

Dr. Ivo Alxneit Solar Technology Laboratory Paul Scherrer Insitut

Laboratory for Solar Technology

Solar Technology Laboratory (STL)

our mission is to develop the science and technology that is required for transforming, at an industrial scale, solar energy into chemical fuels with a thermochemical process that effects this conversion more competitively than any other solar-to-fuel process

concentrate — store — transport

Laboratory for Solar Technology

Outline

- general motivation: solar fuels
- concentrated solar radiation
 - concepts
- thermochemical cycles
 - basics
 - energetics / efficiencies
- instrumentation: solar furnace / solar simulator
- example: Zn / ZnO cycle
 - carbon free
 - carbothermic

Electricity Consumption

Laboratory for Solar Technology

Solar Radiation

Concentrated Solar Radiation:

High Temperatures

Laboratory for Solar Technology

Paul Scherrer Institut • 5232 Villigen PSI

Concentrated Solar Radiation: High

High Efficiency

Laboratory for Solar Technology

Instrumentation:

Solar Furnace

Instrumentation:

Solar Simulator

Solar Fuels

- Zn / ZnO cycle
 - hydrogen
 - syngas
- ceria cycle
 - syngas

- gasification of biomas $C + H_2O \rightarrow H_2 + CO$
- gasification of carbonaceous waste $C + H_2O \rightarrow H_2 + CO$
- cracking of hydrocarbons $C_x H_y \rightarrow C + H_2$
- steam reforming $CH_4 + H_2O \rightarrow CO + 3H_2$ $CO + H_2O \rightarrow CO_2 + H_2)$

Laboratory for Solar Technology

Thermochemical Cycles:

Hydrogen from Water in Two Steps

Paul Scherrer Institut • 5232 Villigen PSI

metal:

Thermochemical Cycles:

Variations

Thermochemical Cycles: Black Box

water splitting reaction: CO_2 reduction :

 $H_2O \rightarrow H_2 + \frac{1}{2}O_2$ $CO_2 \rightarrow CO + \frac{1}{2}O_2$

Laboratory for Solar Technology

Energetics: $H_2O \rightarrow H_2$

Laboratory for Solar Technology

Solar to Fuel Efficiency:

2nd Law Analysis

process efficiency will be lower: optical efficiency, support, ...

Laboratory for Solar Technology

PAUL SCHERRER INSTITUT

aperture

water-cooled front

Laboratory for Solar Technology

concentrated solar radiation

Zn / ZnO Cycle:

10 kW Solar Reactor

Laboratory for Solar Technology

Ш

Zn / ZnO Cycle: 10 kV

10 kW Solar Reactor

Ш

Laboratory for Solar Technology

/home/alxneit/private/doc/talks/ZHAW_20120621/talk.odp / Jun 19, 2012 / AI52

Zn / ZnO Cycle:

10 kW Solar Reactor

IV

Zn / ZnO Cycle:

10 kW Solar Reactor

Laboratory for Solar Technology

V

Laboratory for Solar Technology

Paul Scherrer Institut • 5232 Villigen PSI

Quench:

Comparison Model ↔ Experiment

IV

Laboratory for Solar Technology

Paul Scherrer Institut • 5232 Villigen PSI

Zn / ZnO Cycle: Scale Up to 100 kW

Zn / ZnO Cycle: Scale Up to 100 kW

Ш

Zn / ZnO Cycle:

Scale Up to 100 kW

MWSF: PROMES-CNRS Font Romeu Odeillo

PAUL SCHERRER INSTITUT

Zn / ZnO Cycle:

Scale Up to 100 kW

THE W 1111

> no results yet: - installation completed - start up / initial testing under way - experimenting starts soon

Laboratory for Solar Technology

Paul Scherrer Institut • 5232 Villigen PSI

/home/alxneit/private/doc/talks/ZHAW_20120621/talk.odp / Jun 19, 2012 / AI52

IV

Carbothermic Reduction of ZnO

Beam Down Concept

aperture of experiment 0.5 MW (0.5 m aperture) 4000 suns

Laboratory for Solar Technology

principle:

- "2-cavity" reactor
- fixed bed of ZnO/C-mixture
- 1 batch per day

features:

 $D_{rxn-chamber} = 1.4 \text{ m}$ $H_{bed} \le 0.5 \text{ m}$ capacity $\le 500 \text{ kg ZnO/C}$ lining: SiC plates insulation: Al_2O_3 -SiO₂ separation plates: graphite, SiC on graphite lower part easy to lift down for refilling

300 kW_{th} pilot plant

Ш

Impressions

Laboratory for Solar Technology

300 kW_{th} pilot plant

Paul Scherrer Institut • 5232 Villigen PSI

Acknowledment

people:

- staff at LST / PSI
- staff at PRE / ETHZ

(former and present) (former and present)

funding: - SFOE - EU - KTI (PSI / ETHZ)