Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZFH

Module title	Materials Science
Code	C1
Degree Programme	Master of Science in Life Sciences
Group	Chemistry
Workload	3 ECTS (90 student working hours: 42 contact lessons = 32 h; 58 h self-study)
Module	Name: Dr. Michael de Wild
Coordinator	Phone: +41 (0)61 228 56 49
	Email: <u>michael.dewild@fhnw.ch</u>
	Address: FHNW, Hochschule für Life Sciences, Hofackerstrasse 30, 4132 Muttenz
Lecturers	Dr. Michael de Wild, FHNW
	Dr. Patrick Shahgaldian, FHNW
Entry requirements	Scientific background in chemistry, physics and analytical chemistry.
	The students need a Bachelor in Materials Sciences, Chemistry, Physics, Engineering,
	Biomedical Engineering or equivalent.
	Basic lectures on materials sciences, chemistry, physics and biomaterials are a
1	prerequisite to follow this course.
Learning outcomes	After completing the module, students will be able to:
and competences	 give an overview of the broad spectra of metallic and ceramic materials from the perspective of metarials science from the macroscopic to the papersonic scale.
	 perspective of materials science from the macroscopic to the nanoscopic scale; explain different state-of-the-art technologies and methodologies for the analysis
	of materials;
	 illustrate the important approaches involved in designing and creating materials
	and nanostructures;
	 express the central concepts of nanosciences.
Module contents	 The solid state is discussed based on material scientific theories.
	 The crystallographic and electronic structure of solid materials, as well as optical,
	mechanical and magnetic properties are examined.
	• The influence of sterilization and irradiation on material properties is reviewed.
	Shape Memory Alloys are discussed.
	Metallographic preparation techniques, Fractography.
	• High-end oxide ceramics and their ability for phase-transformation toughening are
	discussed.
	• The macroscopic and microscopic structure and properties of metallic and ceramic
	materials are compared and state-of-the-art characterization methods are
	introduced.
	Nanocrystalline materials are discussed.
	 Imperfections and their effects on material properties are highlighted.
	Key physical characteristics of nanoscale materials (vs. bulk) are studied, including
	lotus and gecko effects.
	Fabrication, functions and properties of nanomaterials of different types are
	discussed.
	Top-down as well as bottom-up approaches are emphasized.
	• Several important classes of nanomaterials (e.g., nanoparticles, nanotubes, 2D
	material, metal-organic frameworks, mesoporous materials, advanced polymers)
	are studied

A cooperation between BFH, FHNW, HES-SO, ZFH

	• Selected applications of nanomaterials in the field of life sciences are treated.
	 Important aspects of the (eco)toxicity of nanomaterials are discussed.
Teaching / learning	Lecture and blended learning:
methods	Contact lessons
	Lectures, Q&A-sessions
	Group Exercises
	Simulations
	Demonstrations
	Self-study
	Learning videos
	 Interactive simulations (<u>https://phet.colorado.edu/en/simulations/category/new</u>)
	Individual Project Studies
Assessment of	1. Final written exam, closed book, (100%).
learning outcome	
Format	7-weeks
Timing of the	Autumn semester, CW 38-44
module	
Venue	Blended learning format. Presence sequences take place in Olten
Bibliography	Pre-reading
	The scripts for this module will be available on moodle timely before the module starts. Likewise, selected scientific articles and instructions for pre-work are announced on the moodle platform.
	Course material G. Carter, D. Paul, Materials Science and Engineering, ASM International, Materials Park, OH, 2010. ISBN 978-0-87170-399-6.
	E. Hornbogen, G. Eggeler, E. Werner, Werkstoffe, Aufbau und Eigenschaften von Keramik-, Metall-, Polymer- und Verbundswerkstoffen, Springer Verlag Berlin Heidelberg, 2008., ISBN 978-3-540- 71857-4.
	W.D. Callister, D.G. Rethwisch, Materials Science and Engineering: SI Version (English), Wiley-VCH Verlag GmbH & Co KgaA, 2016.
	M. Köhler, W. Fritsche: Nanotechnology, 2. ed, Wiley-VCH Verlag GmbH & Co KgaA, Weinheim, 2007. ISBN 978-3-527-31871-1.
	J. N. Israelachvili, Intermolecular and surface forces, 3rd ed., Academic Press, San Diego, 2011. ISBN-978-0- 12-391927-4.
	Interactive simulations (<u>https://phet.colorado.edu/en/simulations/category/new</u>)
	Selected recent scientific articles
Language	English
Links to other	Recommended supplementary modules:
modules	C2 "Surface Characterization" and C3 "Polymers and Applications".
	Specialisation modules FHNW: "Bio-interfaces and Bio-conjugate Chemistry",
	"Supramolecular Chemistry and Nanochemistry", "Polymers and Applications"
Comments	
Last Update	06.03.2025