

02.04.2025 - 1 / 3 -

Module Programming, Algorithms and Data-Structures

Code V5_1

Degree Program Master of Science in Life Sciences (MSLS)

ECTS Credits 5

Workload 150h: 45h Lecture (3 Lessons/W), 30h Exercises (2 Lessons/W), 75h Self-study

Module
Coordinators

Name Dr. Manuel Gil
Phone +41 (0)58 934 57 44

Email manuel.gil@zhaw.ch

Name Dr. Stefan Höck

Phone +41 (0)58 934 55 74

Email stefan.hoeck@zhaw.ch

Address ZHAW Zürcher Hochschule für Angewandte Wissenschaften

Life Sciences and Facility Management

Einsiedlerstrasse 31

CH-8820 Wädenswil

Lecturers • Dr. Manuel Gil
• Dr. Stefan Höck

Entry Requirements • Basic knowledge in arithmetic
• Basic handling of a computer
• No prior experience in programming is required.

Learning Outcomes
and Competences

• Understanding the concept of computation and computational problems
• Definition of the model of computation and motivation of computational problems
• Acquire modular and algorithmic thinking to classify and solve such problems
• Knowledge of basic algorithmic paradigms and corresponding data-structures
• Basic navigation in an Unix environment
• Ability to create small (to medium-size) programs
• Syntax of the prominent programming language Python
• Core knowledge to self-teach new languages

Module Content

The content of the module is conceptually divided in two parts: theory and practice.
The theoretical part includes the sections Computational Model and Algorithms and
Data-structures, whereas the practical part covers Unix Environment and
Programming. The actual topics in the four sections, however, have crosslinks and
dependencies. Thus, the topics will be built-up in combination and according to their
connections.

MSLS_V5_1 – Programming, Algorithms and Data-Structures

02.04.2025 - 2 / 3 -

• Computational Model: A certain theoretical background greatly facilitates
learning to program and is a pre-requisite for good programming. Such a
background is introduced in this section.

o Algorithm: General concept of procedures or formulas for solving a
problem

o Boolean algebra: Whereas in elementary algebra expressions denote
mainly numbers, here they denote the truth-values false and true. The
main operations of Boolean algebra are the conjunction (and-operation),
the disjunction (or-operation), and the negation (not-operation).

o Programming structures: The flow of a program is controlled through
loops, conditional statements, and modules (logical units for sub-tasks),
which in turn rely on Boolean algebra.

o Computational complexity: Different Algorithms can solve the same
problem with different efficiencies (concerning time and memory used).
Based on simple examples, we learn to quantify the efficiencies.

o Floating point arithmetic and numerics: Natural numbers, like the
numbers 0 or “18 billion billions” can be represented in a computer. Real
numbers that have an infinite number of digits (like the square-root of 2,
or Pi) cannot be represented exactly. They have to be approximated and
one has to control the rounding errors introduced.

• Algorithms and Data-structures: In this section we learn about fundamental
problems (and their solutions) encountered when data is processed.

o Sorting, searching: When we have a set objects, for example of
numbers or names, we would like to bring them in an order and be able
to search them efficiently.

o Data-structures (strings, lists, tuples, dictionaries trees, graphs): Objects
(or data) can be organised (or structured) in a linear order, or in
hierarchical way, or be associated to each other according to other
criteria. Such an organisation is called a Data-structure.

o Recursion and Dynamic programming: Recursion is one of the central
ideas of computer science. It is a method where the solution to a
problem depends on solutions to smaller instances of the same
problem. During recursion, there may exist cases where same sub-
problems are solved multiple times. Dynamic programming is a
memorisation technique to store the results of already solved sub-
problems.

• Unix environment: Unix is a family of operating systems (like the Microsoft
Windows family). Apple’s OS X, for instance, is Unix based. From a
programmer's perspective, Unix is characterised by a modular design. It
provides a set of simple tools (or commands), each performing a limited, well-
defined function. The tools can be combined to perform more complex tasks. In
this section we learn to use Unix.

o Basic shell navigation: The shell is a user-interface to direct commands
to Unix. We will learn to move, copy, delete, edit, search, archive files; to
make directories; to start, end, pause programs and to control priorities;
and more.

o File manipulation: Make directories, move, copy, delete, edit, search and
archive files.

o Process management: Start, end, pause programs.
• Programming: Building on the theoretical knowledge we will learn to write actual

programs.

MSLS_V5_1 – Programming, Algorithms and Data-Structures

02.04.2025 - 3 / 3 -

o Pseudo-code: Before an algorithm is written in a programming
language, it can be designed and formulated in a language intended to
be read by a human rather than a machine. Such languages have
similar structural conventions to programming languages but offer more
freedom.

o How to comment code: In computer programming, a comment is a
human-readable annotation in the source code of a computer program.
They are added with the purpose of making the source code easier to
understand.

o Memory and its management: There are different regions of a
computer's memory (referred to as registers, heap, and stack).

o Data types: All complex data in a program has to be built from basic
data types like, for example, numbers, boolean (i.e. true and false),
characters, arrays (or vectors).

o Syntax of Python: Python is the programming language used in this
course. The syntax is a set of rules that defines how a Python program
will be written and interpreted.

o Procedural programming is a programming paradigm, which we will
focus on in this course. A procedure is a sequence of computational
steps, providing modularity. Such a procedure can be called by a name
at any point in a program, including by other procedures.

o Object orientation: Procedures and data structures are intimately
related. The object oriented paradigm makes this relation explicit. It
bundles procedures and data structures together into objects. In the
beginning, when we program procedurally, we will already be using
object oriented features. Later in the course, we will define our own
objects.

• Practical part: Here we will write small to medium size programs in the
programming language Python.

Teaching / Learning
Methods

• Basic theoretical knowledge is acquired during the lectures.
• The theoretical knowledge is applied and solidified in the practical exercises.
• The exercises are tied to programming assignments, which are mostly carried

out as self-study
• The students are required to read a portion of the literature as self-study

(tutorials, original papers, reference manuals). Depending on the number of
students, discussions in seminar-style are conceivable.

Assessment of
Learning Outcome

• Programming assignments during the semester (30%)
• Written exam, if number of students is >15; Oral Exam otherwise. Exam counts

70%.

Bibliography Pointers to literature will be provided on Moodle.

Language English

Comments −

Last Update 02.04.2025

	Module

