Module	Modeling of Complex Systems
Code	MSLS_T15
Degree Programme	Master of Science in Life Sciences (MSLS)
ECTS Credits	3
Workload	90 h: Contact 42 h; Self-study 48 h
Module Coordinator	Name: Prof. Dr. Sven Hirsch
Phone: +41 (0)58 934 54 44	
Email: sven.hirsch@zhaw.ch	
Address: ZHAW Zurich University of Applied Sciences	
Life Sciences and Facility Management	
Campus Reidbach	
Postfach	
CH-8820 Wädenswil	
Lecturers	Dr. Sven Hirsch and external lecturers
Entry Requirements	• Students should have basic statistics experience at the bachelor level, including:
descriptive statistics, two-sample tests (parametric and non-parametric),	
correlation measures, probability distributions such as normal and binomial	
distribution, basics of probability theory.	
• Students should know fundamentals of ordinary differential equations as taught	
at the bachelor level.	
• Students will have to complete an entry self-test (Moodle) in advance of the	
module	
• Students will have to install a systems dynamics software prior to the course	
(details will be provided on Moodle)	
Learning Outcomes and Competences	After completing the module students will be able to:
• describe different aspects of system theory and assess where and how system	
theory is applied to real-world problems;	
• apply different qualitative methods for analyzing system models (graphs,	
feedbacks, active-passive Matrix, Vester’s paper computer);	
• reproduce the key elements of system dynamics and its implications for	
technical implementation;	
• use a mathematical tool (Vensim) to implement and simulate a dynamical	
system;	
• apply optimization techniques to fit model predictions to experimental findings;	
• apply Monte-Carlo simulation to perform parametric studies of a model;	
• apply the learned methods to model and analyze systems on their own;	
• be able to communicate and motivate a model to an audience.	
Module Content	The course introduces basic mathematical tools and software used for the modeling
and analysis of real-world systems in the context of life sciences. The following	
contents are taught in this course:	
• Introduction into system theory / system dynamics	
What is a complex system? What is its purpose?
Overview and characterization of various systems (static/dynamical systems, discrete and continuous systems)
Introduction to mathematical models used for the modeling and analysis of systems, including differential equations.
Properties of linear, non-linear and chaotic systems

- Introduction into tools and methods used for system analysis and modeling
 - Basic modeling using software tools (e.g. Vensim, Excel)
 - Analysis of equilibrium and stationary states
 - Numerical integration methods
 - Introduction to stability analysis and convergence testing

- Advanced system dynamics techniques
 - Parameter optimization for fitting model behavior to experimental data
 - Monte-Carlo simulation to perform parametric sensitivity studies

- Detailed case studies of systems and their modeling with examples from environmental sciences, biology, chemistry, industrial processes, and economics, e.g. plant dynamics, bacterial population behavior, drug reactions, or buyer/seller market dynamics

- Practical communication and documentation of a model
 - Argumentation and motivation of a model logic
 - Visualization of the model structure and its behavior

- Project work (self-study/assessment)

Teaching / Learning Methods
- Lectures ~30%
- Student projects with focus on systems modeling ~50%
- Self study (including e-learning unit) ~20%

Assessment of Learning Outcome
The assessment consists of a project assignment (practical study). The individual projects will be conceived and developed during the course. The project will be finalized and documented after the module.

Bibliography
- **Course Book**

- **Introductory material:**
 - D. Aronson, Overview of Systems Thinking, http://www.thinking.net/Systems_Thinking/OverviewSTarticle.pdf
 - K. North, An Introduction to Systems Thinking, http://courses.umass.edu/plmt597s/KarlsArticle.pdf

 Important literature and lecture notes will be provided on Moodle.

Language
- English

Comments
- We mainly use Vensim PLE for visual programming of complex systems. A temporary license for Vensim PRO will be provided for the duration of the course.

Last Update