Master in Life Sciences

A cooperation between BFH, FHNW, HES-SO, ZHAW

Module title	Optimisation and Bio-Inspired Algorithms
Code	CO3
Degree Programme	Master of Science in Life Sciences
Group	Computation
Workload	3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Module	Name: Thomas Ott
Coordinator	Phone : +41 (0)58 934 56 84
	Email: <u>thomas.ott@zhaw.ch</u>
	Address: ZHAW Life Sciences und Facility Management, Schloss 1, 8820 Wädenswil
Lecturers	Thomas Ott, ZHAW
	Ahmad Aghaebrahimian, ZHAW
Entry requirements	Bachelor level of analysis, linear algebra, statistics; basic python programming skills
	There is an online tutorial available for students without python skills
Learning outcomes	After completing the module, students will be able to:
and competences	 understand and analyze different optimization problems
	 understand, explain and validate a variety of linear, nonlinear, deterministic and
	stochastic ontimization methods (a special focus will be on nature-and bio-inspired
	methods such as simulated annealing, genetic algorithms or swarm intelligence)
	 apply the algorithms to problems in their field
Module contents	The major topics covered in the module are:
	 identification of problems solvable with optimization methods
	 abstraction and modelling of task description
	 coding of optimization tasks
	 bio-inspired algorithms
	 implementation of examples from various fields with python
Teaching / learning	lecture, exercises, seminar-style, project work, self-study, python programming
methods	
Assessment of	1. individual project work including a short presentation (60%)
learning outcome	2. written exam (closed book) (40%)
Format	7-weeks
Timing of the	Spring semester, CW 8-14
module	
Venue	Blended learning format. Presence sequences take place in Olten
Bibliography	
Language	English
Links to other	Coordinated with the module Machine Learning and Pattern Recognition
modules	
Comments	
Last Update	19.08.2024