Chemistry and Energy
C5
Master of Science in Life Sciences
Chemistry
3 ECTS (90 student working hours: 42 lessons contact = 32 h; 58 h self-study)
Name: Dr. Jürgen Stohner
Phone: +41 (0)58 934 54 93
Email: juergen.stohner@zhaw.ch
Address: ZHAW Life Sciences and Facility Management, Einsiedlerstrasse 31, 8820
Wädenswil
Dr. Christian Adlhart, ZHAW
Dr. Thomas Pielhop, ZHAW
Dr. Dominik Brühwiler, ZHAW
Dr. Jürgen Stohner, ZHAW
Guest Lecturer
Basis knowledge in chemistry on the level of a BSc Degree in Chemistry is required; this
includes knowledge in thermodynamics, electrochemistry, catalysis, inorganic and
organic synthesis.
After completing the module, students will be able to:
understand the processes that lead from energy sources (solar, bio, chemical) to
energy usage (e.g. mobility) considering
- energy conversion
- energy storage
- energy distribution infrastructure
evaluate the various energy sources with respect to energy density based on
(bio)chemical foundations
<u>Chemical energy storage</u>
Chemistry plays a crucial role in future energy storage strategies. Figures from the
broad perspective of our current energy system including storage strategies (chemical,
electro-chemical, mechanical and mobile) and energy storage densities will be given.
These figures will be challenged in depth with the students' knowledge in
thermodynamic and electrochemical concepts by selected examples including
conversion and production technologies. These may include power to gas
(thermochemical CO ₂ activation), methanol chemistry, synthesis gas, hydrogen
technology, ammonia, and mobile or static electrochemical storages systems such as redox flow batteries.
redox now patteries.
Bio-gas/Bio-energy
Biomass in its different forms (native – waste, lignocellulosic – carbohydrate – protein
- lipid) represents an indispensable source of energy. This part will deal with different
aspects of biomass characterization, treatment and energetic valorization such as:
 methods to assess the sustainable potential of biomass of a region;

- biomass composition and characterisation and the chemical value of biomass;
- the role, production and characterization of traditional bioenergy carriers (biogas, biomethane, biodiesel, bioethanol)
- the production and use of advanced biofuels (gasification, pyrolysis, synthetic biofuels) from renewable bioresources;
- advanced concepts of bioraffination of natural resources, including technology chains and energy products of biorefineries.

Solar energy

This part of the lecture focuses on two major fields of solar energy utilization, namely photocatalysis and photovoltaics. The following topics are covered:

- Photocatalysis: Generation of solar fuels (H₂ and products of CO₂ reduction) and environmental remediation (water purification).
- Photovoltaics: Theory of operation and chemistry of photovoltaics, including classic silicon-based and thin film cells, as well as emerging cell technologies and photon management.

Energy and mobility

This part highlights problems associated with 'mobility' when energy policy, air quality and climate issues are considered and which might be solved by the techniques discussed before.

- The turnaround in energy policy will lead us into the solar age, turning away from fossil fuels and nuclear power, with the following consequences:
 - The greenhouse effect forces us to get rid of coal energy used for electric mobility.
 - The political interest of air pollution control falls off, the climate debate has priority
 - Biofuels and biomass combustion leads to conflicts of interests between air quality and climate when used for electric mobility
- High density energy storage of renewable energy as a possibility
- Power to gas as an option for high density energy storage, using existing technology for storage, transportation and filling station
- Air pollutants and after-treatment of exhaust gases for the future mobility with diesel, petrol or electricity.

Teaching / learning methods

- Lectures
- short seminars
- presentations
- case studies
- exercises
- demonstrations and self-study

When pre-readings and pre-course works are required, the students will be informed prior to the course.

Assessment of learning outcome	1. Final written examination (100%)
Format	7-weeks
Timing of the	Spring semester, CW 15-22
module	
Venue	Blended learning format. Presence sequences take place in Olten
Bibliography	Will be announced at beginning of the lectures. Course material can be downloaded
	from the MSLS Moodle platform.
Language	English
Links to other	
modules	
Comments	
Last Update	26.09.2024