

Inhaltsverzeichnis

Vorwort	5
Diplomandinnen und Diplomanden	8
Adshaya Arulanantham	
Angela Bächler	
Fatima Basic	1
Isabel Berger	1
Lena Bischofberger	1
David Bissegger	1
Lena Bolanz	1
Leonie Born	1
Rico Bracher	1
Noëlle Bründler	1
Dominic Campigotto	1
Sarah Deflorin	1
Joél El-Bowari	2
Franca Alicia Estermann	2
Denis Evdokimov	2
Yannik Ezekwu	2
Samuel Faust	2
Lara Gassmann	2
Ryan Graf	2
Jeannine Gujer	2
Sophie Heitele	2
Julian Hofmann	2
Emilija Jankovic	3

Sheena Jove	31
Jann Keller	32
Filzah Khan	33
Michèle Lea Kovacs	34
Liesa Kunz	35
Charles Labaya	36
Gloria Ljubas	37
Kimberly Lutz	38
Ann Lou Mader	39
Tobias Martin	40
Lia Moser	41
Lara Mutlu	42
Alen Myrtaj	43
Elisa Oegema	44
Jessica Okle	45
Emily Ann Oswald	46
Patrick Pajic	47
Theresa Sophie Plaschke	48
Tanja Renggli	49
Sabrina Ritz	50
Lorenzo Santoro	51
Janira Scaburri	52
Serna Sürer	53
Céline Hélène Vollkommer	54
Vincent Vorburger	55
Viviane Werlen	56
Jasmin Whitworth	57

Forschungsprojekt: 58 **Entwicklung von** Qualitätsstandards für pflanzliche Wirkstoffe Institut für Chemie und 60 Biotechnologie (ICBT) Perspektiven 62 Internationaler 65 Austausch **ALUMNI ZHAW** 66 **ZHAW LSFM** 67

Liebe Diplomandinnen und liebe Diplomanden des BT22

Heute gratulieren wir Ihnen recht herzlich zu Ihrem Diplom als «Bachelor of Sciences ZHAW in Biotechnologie», dass Sie nach drei erfolgreichen Studienjahren in Ihren Händen halten. Sie haben es sich redlich verdient.

Gestartet sind Sie im Jahr 2022 und haben sich mit sehr viel persönlichem Engagement Ihrem Wunsch-Studium gewidmet. Ihre Klasse zeichnete sich von Beginn an durch hohe Leistungsfähigkeit aus. Sie haben sich Ihr biotechnologisches Fachwissen mit grossem Eifer angeeignet.

Weiter war es Ihnen immer wichtig, dass Sie Alle als Persönlichkeiten wahrgenommen werden. Gegenseitiger Respekt und Wertschätzung gehörten für Sie als Klasse auch zur Basis Ihrer Ausbildung. Diese «social skills» im persönlichen Umgang waren Ihnen sehr wichtig. Denn, um mit Oscar Wilde zu sprechen:

«Nur Persönlichkeiten bewegen die Welt, niemals Prinzipien.»

Dies wünschen wir Ihnen, dass Sie weiter als Persönlichkeiten erfolgreich agieren und weiter wachsen. Viel Glück und Erfolg wünschen wir Ihnen bei der Realisierung Ihrer privaten und beruflichen Ziele!

Mit herzlichen Grüssen,

Susanne Dombrowski Leiterin Studiengang Biotechnologie

Analyse der biologischen Abbaubarkeit von Additiven für die Produktion nachhaltiger Biopolymere und Bestimmung beteiligter Mikroorganismen

Diplomandin Adshaya Arulanantham

Korrektor/-in ZHAW Dr. Rolf Warthmann, Susanna Hüsch

Kunststoffabfälle, insbesondere Mikroplastik belasten die Umwelt zunehmend und stellen eine zentrale Herausforderung für Umwelt und Gesellschaft dar. Kunststoffe sind langlebig, schwer abbaubar und gelangen in vielfältige Ökosysteme, wo sie Organismen schädigen und mikrobielle Gemeinschaften stören können. Vor diesem Hintergrund wurde in dieser Arbeit die aerobe biologische Abbaubarkeit von fünf alternativen Additiven untersucht, die von der Firma KUORI GmbH zur Verfügung gestellt wurden. Getestet wurden Citrofol®, Pripol® 1009, Pripol® 1012, Meriginol® 207 und Endenol® 2192 unter industriellen Kompostierungsbedingungen mithilfe respirometrischer Labortests über einen Zeitraum von rund 40 Tagen.

Deutliche Unterschiede im Abbauverhalten: Endenol® 2192 wies mit über 85 % die höchste Abbaurate auf, gefolgt von Citrofol® (ca. 73 %) und Meriginol® 207 (ca. 60 %). Pripol® 1012 (ca. 35 %) und Pripol® 1009 (ca. 30 %) zeigten eine deutlich geringere Abbaubarkeit. Die Resultate verdeutlichen, dass die chemische Struktur und Funktionalität der Additive einen wesentlichen Einfluss auf ihre mikrobielle Zersetzung haben. Zur Identifikation der abbauenden Mikroorganismen wurden Proben auf Nährböden mit den Additiven als alleiniger Kohlenstoffquelle ausplattiert und anschliessend mittels PCR und Gensequenzierung

analysiert. Dabei konnte unter anderem die Stämme Streptomyces anulatus und Pseudomonas sp. sB27a eindeutig identifiziert werden. Weitere Isolate zeigten Ähnlichkeiten mit bislang nicht kultivierten Umweltbakterien.

Die Untersuchung zeigt die Relevanz biologisch abbaubarer Additive im Kontext nachhaltiger Materialentwicklung. Zukünftige Studien sollten längere Testzeiträume und genomische Methoden integrieren, um Abbauprozesse besser zu verstehen und gezielt umweltverträgliche Materialien zu fördern.

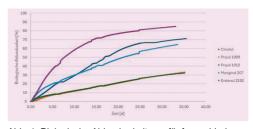


Abb. 1: Biologische Abbaubarkeit von fünf verschiedenen alternativen Weichmachern in (%) (Die Linien sind die Mittelwerte aus Triplikaten).

Abb. 2: Respirometer mit verschiedenen Versuchsansätzen unter aeroben Bedingungen bei 58 °C.

Vergleichsanalytische Untersuchungen zum Baikal Helmkraut Scutellaria baicalensis (vertraulich)

Diplomandin	Angela Bächler
Korrektoren ZHAW	Dr. Andreas Lardos, Dipl. Chem. (FH) Samuel Peter

Die Traditionelle Chinesische Medizin (TCM) gilt als eines der ältesten Medizinsysteme. In den letzten Jahren ist das Interesse an der TCM in Europa stetig gewachsen, was sich in der Neuaufnahme von Monographien zu TCM-Arzneipflanzen in die Europäische Pharmakopöe (Ph. Eur.) zeigt. Das Baikal-Helmkraut Scutellaria baicalensis Georgi, Familie der Lamiaceae, wird in der TCM seit Jahrhunderten verwendet. Die Wurzel, der arzneilich verwendete Teil der Pflanze, enthält zahlreiche Inhaltsstoffe, insbesondere Flavonoide wie Baicalin und Wogonin und weist eine Vielzahl an pharmakologischen Wirkungen auf. Der Ph. Eur. Monographie-Eintrag von Scutellariae baicalensis radix wurde erstmals im Jahr 2011 in der Ph. Eur. aufgenommen und seither regelmässig überarbeitet.

Im TCM-Garten der ZHAW Wädenswil wird *S. baicalensis* angebaut. Für diese Bachelorarbeit wurde die Wurzel der Pflanze chromatographisch analysiert und

Abb. 1: Beispielchromatogramm verschiedener Proben von Scutellariae baicalensis radix (Derivatisierung mit NP/PEG bei UV 366 nm, Entwicklung mit optimiertem Laufmittel und optimierter Auftragemenge).

hinsichtlich der Inhaltsstoffe mit kommerziellen Mustern verglichen. Dazu wurden unterschiedliche Ansätze der therapeutischen und analytischen Probenaufbereitung verfolgt. Die chromatographische Analyse erfolgte qualitativ mittels Hochleistungs-Dünnschichtchromatographie (HPTLC) und quantitativ mittels Ultra-High Performance-Flüssigkeitschromatographie (UHPLC). Für die HPTLC-Methode wurden verschiedene mobile Phasen und Derivatisierungsreagenzien verwendet. Anhand der durchgeführten Analysen konnte ein Vorschlag zur Optimierung der HPTLC-Methode in der Ph. Eur. Monographie erstellt werden. Mittels UHPLC konnte der Gehalt des Hauptinhaltsstoffs Baicalin ermittelt und die Gehaltskonzentration der Methode der Probenaufbereitung gegenübergestellt werden. Die Probenaufbereitung nach Ph. Eur. Monographie zeigte die besten Resultate.

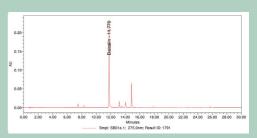


Abb. 2: UHPLC-Chromatogramm der im TCM-Garten der ZHAW Wädenswil angebauten Scutellariae baicalensis radix bei 275 nm.

Entwicklung und Charakterisierung von Sensoren für die Bioprozessüberwachung (vertraulich)

Diplomandin	Fatima Basic
Korrektoren ZHAW	Prof. Dr. Caspar Demuth, Dr. Juan Limon Petersen

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einem Industriepartner durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Das Ziel dieser Arbeit war die Evaluation eines geeigneten Verfahrens zur Trockenlagerung elektrochemischer Sensoren im biotechnologischen Bereich. Da bisher nur vereinzelt Literatur zu diesem Thema vorhanden ist und die Testverfahren zur Spezifizierung einer solchen Beschichtung nicht standardisiert sind, wird in dieser Arbeit ein mögliches Verfahren zum Vergleich von verschiedenen Polymerbeschichtungen aufgezeigt.

Die zentrale Problematik liegt darin, dass die Beschichtung sowohl langzeitstabil als auch beständig gegenüber Umwelteinflüssen wie Temperatur- und Feuchtigkeitsschwankungen sein muss, reversibel abwaschbar, ohne dabei die Funktionalität und Sensitivität der Sensoren negativ zu beeinflussen.

Im Rahmen der Arbeit konnte durch gezielte Auswahl und Anwendung bestimmter Polymere eine Beschichtung formuliert werden, die diese Anforderungen erfüllt und somit eine potenziell geeignete Lösung für die Trockenlagerung darstellt.

Impedanz-Durchflusszytometrie als innovative Analysemethode zur Untersuchung antimikrobieller Effekte und der Phage/Antibiotic-Synergy (vertraulich)

Diplomandin	Isabel Berger
Korrektoren ZHAW	Prof. Dr. Lukas Neutsch, MSc Marco Fluri
Korrektor extern	Dr. Marco Di Berardino, Amphasys AG

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma Amphasys AG durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Die Impedanz-Durchflusszytometrie (IFC) ist eine neue Messmethode, deren Potential im Bereich der Biotechnologie zunehmend erschlossen wird. Dabei werden elektrochemische Eigenschaften einzelner Zellen einer Population gemessen, wie die Zellgrösse, Membranintegrität und die innere Leitfähigkeit. Die IFC ermöglicht somit eine schnelle und markerfreie Analyse einzelner Zellen in Echtzeit. Aus dieser Messmethode lassen sich Aussagen treffen über die Vitalität, den Differenzie-

rungszustand und die physiologischen Veränderungen innerhalb einer Zellpopulation. Des Weiteren liefert die Methode genaue Informationen zur aktuellen Zellkonzentration, was ihren Wert für Anwendungen in der Bioprozesstechnologie weiter steigert. Diese Bachelorarbeit befasste sich unter anderem mit der Etablierung der IFC-Methode für die Überwachung kleinzelliger Bakterien-Kulturen. Dabei lag der Fokus auf der quantitativen Analyse lebender und toter Zellen, der Bestimmung der Zellzahl über den zeitlichen Verlauf. sowie Rückschlüsse auf intrazelluläre Veränderung. Um die IFC-Daten zu validieren, wurde die Durchflusszytometrie mit Lebend-/Tot-Färbung als etablierte Referenzmethode eingesetzt. Weiters wurde das Potenzial der IFC zur Detektion

antimikrobieller Effekte auf Bakterienkulturen untersucht und die kombinatorischen Wirkmechanismen zwischen Antibiotika und Bakteriophagen (Phage/Antibiotika-Synergie, PAS) analysiert. Dabei wurden bakterizide und bakteriostatische Wirkungen unterschieden. Ziel war es, dosisabhängige Effekte antimikrobieller Substanzen sowie potenzielle synergetische Wirkmechanismen von PAS zu überwachen.

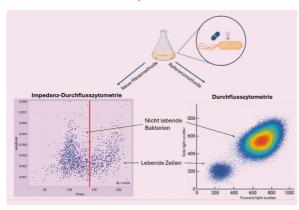


Abb. 1: Visuelle Zusammenfassung der Arbeit. Ausgehend von der biologischen Kultivierung in der Shake Flaks (Mitte oben) wurde die Referenzanalytik mittels FCM (rechts) und die IFC Messung (links) durchgeführt und gegeneinander verglichen.

Expression, Aufreinigung und Analytik vom neonatalen Rezeptor FcRn und von Fcγ-Rezeptoren

Diplomandin	Lena Bischofberger
Korrektorin ZHAW	Prof. Dr. Sabina Gerber
Korrektorin extern	Dr. Roger Beerli

Monoklonale therapeutische Antikörper werden vielfältig zur Behandlung von entzündlichen und onkologischen Erkrankungen eingesetzt. Dabei spielt die Interaktion der Antikörper mit unterschiedlichen Fcy-Rezeptoren eine zentrale Rolle für Immuneffektorfunktionen, welche z. B. die Entfernung der antigenen Zelle durch natürliche Killerzellen oder durch Phagozytose steuern (Abb. 1). Unterschiedliche IgG-Isotypen zeigen aufgrund ihrer unterschiedlichen Strukturen unterschiedliche Affinitäten für die Fcy-Rezeptoren und somit unterschiedliche Stärken der Effektorfunktionen. Basierend auf der therapeutischen Strategie werden die Antikörperformate entwickelt. Der neonatale Rezeptor FcRn rezykliert Antikörper während der Pinozytose und verleiht einigen Immunglobulinen dadurch eine hohe Halbwertszeit im Blut von 3-4 Wochen.

Abb. 1: Bindeinteraktion zwischen der extrazellulären Domäne des FcyRIIIB und der Fc-Domäne eines IgG1-Antiköpers, Ko-Kristallstruktur, PDB 6EAQ.

Ziel dieser Bachelorarbeit war die rekombinante Expression von drei humanen Fcv-Rezeptoren sowie dem neonatalen Rezeptor in Suspensionszellen. Die Rezeptoren wurden erfolgreich exprimiert, mittels Affinitätschromatographie aufgereinigt und anschliessend umfassend bioanalytisch mittels SEC-MALS. Isoelektrischer Fokussierung, SDS-PAGE und Massenspektrometrie untersucht. Die Thermostabilität wurde mit Differential Scanning Fluorimetry (DSF) bestimmt und mit kommerziellen Produkten und vorherigen Herstellungen verglichen. Die Bindungen der Rezeptoren an IgG-Antiköper wurden mittels Surface Plasmon Resonance (SPR) quantifiziert (Abb. 2). Für die Analysen wurden vermarktete monoklonale therapeutische Antikörper eingesetzt, für welche Literaturwerte für die Dissoziationskonstanten bekannt waren. Die mit den neu hergestellten Rezeptoren ermittelten KD-Werte waren in guter Übereinstimmung mit den publizierten Werten.

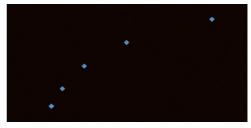


Abb. 2: Steady-state Bindungsanalytik eines IgG1 und eines Fcy-Rezeptors.

Neue Wirkstoffe gegen antibiotikaresistente Bakterien: Rekombinante Herstellung und Charakterisierung der Peptidoglykanhydrolase PGH_PB06 (vertraulich)

Diplomand	David Bissegger
Korrektor ZHAW	PD Dr. Mathias Schmelcher
Korrektor extern	Dr. Fritz Eichenseher

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer Firma durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Analyse von Stress mittels eines Reportersystems in Keratinozyten (vertraulich)

Diplomandin Lena Bolanz

Korrektoren ZHAW Prof. Dr. Jack Rohrer, Dipl. Ing. Leopold von Balthazar

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der ZHAW durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Die Haut ist das grösste Organ des menschlichen Körpers und stellt eine essenzielle Barriere gegenüber der Umwelt dar. Im Rahmen der pharmazeutischen Forschung gewinnen alternative Methoden zu Tierversuchen zunehmend an Bedeutung. Ziel dieser Bachelorarbeit war die Etablierung eines 3D-Hautmodells aus N/TERT-Keratinozvten, primären Fibroblasten sowie spezifischen Reporterkonstrukten (MSC#32 und MSC#42), um mitochondriellen Stress durch die Substanz Carbonylcyanid-m-Chlorphenylhydrazon (CCCP) zu detektieren. CCCP wirkt als Protonophor und entkoppelt die mitochondrielle Atmungskette, indem es den Protonengradienten aufhebt. Dies führt zur Störung des Membranpotenzials und aktiviert über die HRI-Kinase die Integrierte Stressantwort (ISR), welche durch die Translation von ATF4, die Transkription stressadaptiver Gene induziert. Die in dieser Arbeit verwendeten Reporterkonstrukte basieren auf Fluoreszenzdetektion und steuern gezielt den Transkriptionsfaktor ATF4 an. In In-Vitro Assays lässt sich eine bis zu 9-fache Induktion der Reporteraktivität bei niedrigen Konzentrationen von CCCP nachweisen.

Im 3D-Hautmodell bilden sich die epidermalen Schichten und Dermale Strukturen aus. Histologische Präparate zeigen nach CCCP-Behandlung eine verstärkte eosinophile Färbung sowie eine dichtere basophile Kernfärbung auf, was auf eine mitochondrielle Stressreaktion der Zellen hindeutet. Die morphologische Stabilität des Hautmodells unter Stressbedingungen legt nahe, dass es sich als zuverlässige Alternative zu Tierversuchen für die Testung stressinduzierender Substanzen eignet.

Abb. 1: Epidermismodell mit N/TERT-Zellen mit Kollagenbeschichtung mit 60× Vergrösserung aufgenommen.

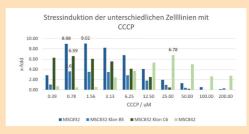


Abb. 2: Grafische Auswertung der Zelllinien im direkten Vergleich miteinander. Die Mittelwerte der einzelnen Durchgänge wurden gegen die CCCP-Konzentration (0.39–200 μ M) aufgetragen. Die Peaks der MSC#32 Zellen und dessen Single Zell Klone liegen bei 0.78 und 1.56 μ M. Hingegen der Peak des MSC#42 bei 25 μ M.

Analyse und softwaregestützte Auswertung zellulärer Prozesse auf CMOS-Mikrochips mittels Impedanzmessung und elektrischer Stimulation (vertraulich)

Diplomandin Leonie Born

Korrektor/-in ZHAW Prof. Dr. Jack Rohrer, Dr. Arezoo Daryadel

Das Projekt wurde in Zusammenarbeit mit der Firma 3Brain AG durchgeführt und steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Als Studierende der Biotechnologie konnte ich wertvolle Erfahrungen im Bereich der Zellkulturtechnik, elektrochemischen Charakterisierung durch Impedanzspektroskopie sowie der Datenvisualisierung mit R und Python sammeln.

Biomimicry in Biotechnology – Aus der Natur inspirierte Konzepte für neue technische Anwendungen

Diplomand	Rico Bracher
Korrektoren ZHAW	Prof. Dr. Lukas Neutsch, BSc Bruno Balmer
Korrektorin extern	Prof. Dr. Ille Gebeshuber, IAP – TU Wien, Österreich

Biotechnologie und Bionik befassen sich beide mit der belebten Umwelt, verfolgen dabei jedoch unterschiedliche Ansätze. Während die Biotechnologie lebende Organismen direkt zur Herstellung gewünschter Produkte nutzt, adaptiert die Bionik natürliche Funktionsprinzipien für technische Anwendungen. Dieses Nachahmen von biologischen Systemen für technische Zwecke kann auch als Biomimicry bezeichnet werden.

Ein eindrucksvolles Beispiel bionischer Inspiration sind Insektenflügelmembranen. Sie sind nicht nur leicht und stabil, sondern weisen oft funktionale Nanostrukturen auf. Besonders faszinierend ist die mechanisch bakterizide Wirkung von sogenannten Nanopillars, wie sie auf Libellen- und Zikadenflügel zu finden sind. Ihre Nachbildung könnte vielfältige biotechnologische Anwendungen ermöglichen. Die Untersuchung solcher Strukturen ist bereits Gegenstand intensiver Forschung. Verschiedene Gruppen nutzen Verfahren wie die Softlithografie, bei der mithilfe von Silikon ein Negativ einer Oberfläche erstellt und auf andere Materialien übertragen wird.

In dieser Arbeit wurde dieses Verfahren so angepasst, dass sich eine Nanostruktur direkt in den Boden einer Standard-96-Well-Plate integrieren lässt. So können eine Vielzahl biotechnologischer Assays an den Replikaten durchgeführt und deren Wirkung analysiert werden. Um den Effekt der Replikate mit den Leistungen ihrer biologischen Originale vergleichen zu können, wurde ein System entwickelt welche Versuche an den natürlichen Vorbildern erleichtert. Dies ermöglicht einen direkten Vergleich zwischen biologischem Vorbild und dem Replikat. Ein erster Proof of Concept zur Messung des bakteriziden Effekts auf den natürlichen Vorbildern konnte erfolgreich erbracht werden. Künftig gilt es, das Protokoll weiter zu optimieren, um den Effekt zuverlässig und an möglichst vielen unterschiedlichen Mikroorganismen und Zelltypen charakterisieren zu können.

Abb. 1: Replikationssystem für nanostrukturierte Oberflächen aufgenommen während dem Replikationsprozess eines Zikadenflüdels.

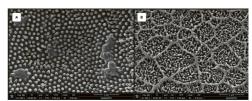


Abb. 2: REM-Aufnahmen von nanostrukturierten Insektenflügelmembranen; A: Nanopillars von Zikaden; B: Nanopillars von Libellen.

Nachweis von pflanzlichen Schleimstoffen auf der Mundschleimhaut (vertraulich)

Dip	olomandin	Noëlle Bründler
Ko	rrektor/-in ZHAW	Dr. Evelyn Wolfram, Dr. Andreas Lardos

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer externen Firma durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Semiquantitative Substrat- und Metabolitanalytik von Kultivierungsmedien mittels Timegated PicoRaman M3

Diplomand	Dominic Campigotto
Korrektoren ZHAW	Dr. Cedric Schirmer, Prof. Dr. Lukas Neutsch

In dieser Bachelorarbeit wurde untersucht, ob sich die Raman-Spektroskopie – eine moderne, berührungslose Messmethode – für die Analyse von Nährstoffen und Stoffwechselprodukten in Kultivierungsmedien eignet. Ziel war es zum Beispiel Substanzen wie Glukose und Glutamin im sogenannten HP5-Medium, welches in der tierischen Zellkultur Anwendung findet, zuverlässig zu messen. Zusätzlich wurden Fettmessungen in *Yarrowia lipolytica* durchgeführt, einer Hefe, die besonders viele Lipide produzieren kann.

Die Besonderheit der verwendeten Raman-Methode liegt in der Timegated-Technologie des PicoRaman M3. Diese Technik filtert störendes Hintergrundlicht (Fluoreszenz) zeitlich heraus und verbessert damit die Genauigkeit der Messung. Verschiedene Messaufbauten – wie eine Messlanze und eine Durchflusszelle (Flowcell) – wurden getestet, um die bestmögliche Methode für verschiedene Proben zu finden.

Die aufgenommenen Raman-Spektren wurden mithilfe der Software SIMCA analysiert. Dabei kamen statistische Modelle zum Einsatz, die nach vorheriger Kalibration auch unbekannte Probenkonzentrationen vorhersagen konnten. Im Verlauf der Arbeit wurden wichtige Herausforderungen wie störende Luftblasen im System oder eine unzureichende Reproduzierbarkeit gelöst, was zu deut-

lichen Verbesserungen führte. Insgesamt zeigt die Arbeit, dass die Raman-Spektroskopie ein vielversprechendes Werkzeug für die Prozessüberwachung in der Biotechnologie darstellt. Sie ist schnell, zerstörungsfrei und kann kontinuierlich eingesetzt werden – eine echte Alternative zu herkömmlichen, aufwändigeren Methoden wie Flüssigchromatographie mit Massenspektrometrie-Kopplung (LC-MS).

Abb. 1: Der Messaufbau für eine HP5-Medium-Messung mit der Messlanze am Timegated PicoRaman M3.

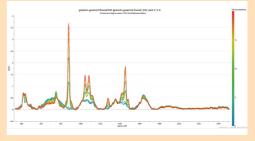


Abb. 2: Vorverarbeitete Ramanspektren der L-Glutamin-Messung verschiedener Konzentrationen.

Entwicklung eines Shampoos auf natürlicher Basis inkl. Ausarbeitung und Validierung einer Analysenmethode zur Bestimmung der Wirkstoffe (vertraulich)

Diplomandin	Sarah Deflorin
Korrektor ZHAW	Dr. Thomas Schwander
Korrektor extern	Michael Hartmann, Labor Hartmann GmbH

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma Labor Hartmann GmbH durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Ziel der Bachelorarbeit war die Entwicklung eines natürlichen Unisex-Shampoos für das Produktsortiment von Savontage unter Berücksichtigung gängiger Naturkosmetikstandards wie beispielsweise COSMOS. Verschiedene waschaktive Tenside. Verdickungs- und Feuchthaltemittel sowie ätherische Öle als Duftstoffe wurden zusammen mit weiteren Inhaltsstoffen getestet. Zur Vermischung der Wasser- und Ölphase kam ein Emulgator zum Einsatz. Das Duftkonzept der finalen Formulierung basiert auf Rosmarin- und Thymianöl. Thymianöl wirkt konservierend, während der Wirkstoff Rosmarinöl die Durchblutung fördert und Haarausfall sowie -schäden vorbeugen soll. Ergänzend wurde Koffein als aktive Komponente zur Unterstützung der Kopfhautdurchblutung und des Haarwachstums eingesetzt. Herausforderungen traten bei Schaumbildung. Viskosität und Formulierungsstabilität auf. Trotz Zugabe eines Verdickers blieb die Viskosität gering, vermutlich aufgrund störender Einflüsse durch Öle und Tenside. Da Trübungen und Phasentrennung nur bei verdickten Formulierungen auftraten

und auch nach dem Ausschluss bestimmter Konservierungsmittel, die Instabilitäten verursachten, weiterhin bestanden, wird das Verdickungsmittel als wahrscheinliche Ursache vermutet. Zur Optimierung sind Anpassungen im Herstellungsprozess sowie Stabilitäts- und mikrobiologische Tests erforderlich, um ein kommerzielles Produkt zu erhalten.

Weiterhin wurde eine RP-HPLC-Methode zur Gehaltsbestimmung von Koffein und dem Konservierungsmittel Kaliumsorbat im Shampoo entwickelt und gemäss ICH-Guideline Q2 validiert. Verschiedene stationäre und mobile Phasen (wässrige Lösung, Acetonitril, Methanol) wurden getestet. Die finale Methode erfüllte alle Kriterien wie Spezifität, Präzision, Wiederfindung, Linearität sowie Robustheit und eignet sich für künftige Produktanalysen, wie das HPLC-Chromatogramm einer Probelösung (Abb. 1) mit der Auftrennung beider Komponenten zeigt.

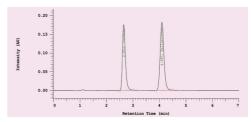


Abb. 1: Chromatogramm der Trennung der im Shampoo enthaltenen Analyten Koffein (2.7 min) und Kaliumsorbat (4.1 min) mittels HPLC unter Verwendung definierter mobiler und stationärer Phase.

Applikationen der pflanzenzellkulturbasierten zellulären Landwirtschaft (vertraulich)

Diplomandin	Joél El-Bowari
Korrektor/-in ZHAW	Prof. DrIng. Regine Eibl-Schindler, MSc Luca Brown

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der ZHAW-Fachgruppe Zellkulturtechnik durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Im Rahmen der Arbeit wurde das Wachstum von Avocado-Zellsuspensionen (Persea americana) in zwei Murashige-Skoog (MS)-Medien verglichen. Die Kultivierung erfolgte im Batch-Modus in Schüttelkolben. Die Biomasseentwicklung wurde über das Frisch- und Trockengewicht, den Zuckerkonsum, den pH-Verlauf und die Leitfähigkeit analysiert. Ein Medienwechsel führte zu einer signifikanten Erhöhung der Zellmasse, wobei eines der Medien besser abschnitt.

Die Analyse sekundärer Metabolite ergab, dass in einem der Medien höhere Gehalte an Catechin und Epicatechin erreicht wurden. Besonders unter Zuckermangel zeigte sich ein Anstieg beider Zielmetabolite. Die Elicitierung mit Methyljasmonat führte zu einer konzentrationsabhängigen Wachstumshemmung und beeinflusste die Metabolitenprofile zusätzlich. Während Epicatechin frühzeitig anstieg und danach abnahm, zeigte Catechin eine spätere Zunahme. Die Ergebnisse deuten auf eine metabolische Umlagerung vom primären zum sekundären Stoffwechselwegen hin.

Ein Scale-up auf ein orbital geschütteltes 10-L- Single-Use Bioreaktorsystem wurde erstmals erfolgreich durchgeführt und resultierte in über 13 g L⁻¹ trockener Biomasse.

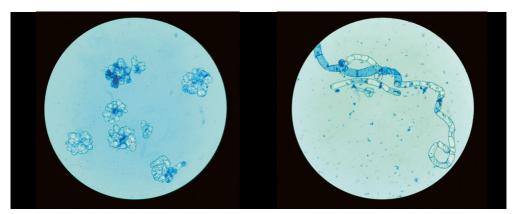


Abb. 1: Zellmorphologie von *Persea americana* in MS-1 (links) und MS-2 (rechts) während der Batch-Kultivierung in Schüttel-kolben. In MS-1 dominieren kompakte Zellaggregate, wohingegen in MS-2 vermehrt gestreckte Zellverbände auftreten.

Etablierung eines Immuno-Onkologie-Assays mittels CAR-NK-Zellen und fluoreszenzmarkierter Zielzelllinien

Diplomandin Franca Alicia Estermann

Korrektor/-in ZHAW Prof. Dr. Jack Rohrer, Dr. Arezoo Daryadel

Chimäre Antigenrezeptoren (CARs) bieten vielversprechende Möglichkeiten in der Immuntherapie. Während CAR-T-Zellen bereits klinisch etabliert sind, rücken CAR-NK-Zellen zunehmend in den Fokus, unter anderem dank ihres geringeren Risikos für Nebenwirkungen, der MHC-unabhängigen Zielerkennung und ihres Potenzials für allogene, «off-the-shelf»-Therapien.

Im Rahmen dieser Bachelorarbeit wurde ein In-vitro-Assay zur funktionellen Analyse CAR-modifizierter NK-Zellen entwickelt. Hierfür wurden NK-92- und NK-92MI-Zellen mit einem bestehenden anti-CD19-CAR-Vektor stabil transfiziert und nach antibiotischer Selektion funktionell charakterisiert.

Parallel wurde ein fluoreszenzbasiertes Zielzellmodell entwickelt, um Zielzellen im Killing Assay visuell identifizierbar zu machen. Hierzu wurden die Reporterproteine BFP2 und Electra1 in den Expressionsvektor pcDNA3.1(-)-Sapl kloniert, um nach transienter Transfektion eine stabile zelluläre Fluoreszenz zu erzeugen. Die resultierenden Konstrukte wurden hinsichtlich ihrer Eignung zur Markierung von HeLa-, HeLa-CD19- und HEK293-Zellen evaluiert, mit dem Ziel, Zielzellen im Assay eindeutig detektieren und von Effektorzellen abgrenzen zu können.

Die funktionelle Charakterisierung der modifizierten NK-Zellen erfolgte mittels FACS- sowie bildbasierter Killing Assays. Als Zielzellen kamen CD19-positive HeLa-Zellen bzw. nicht-modifizierte Hel a-Zellen zum Einsatz. In einem zeitaufgelösten Mikroskopieansatz konnten zelluläre Interaktionen sowie das Auftreten von Zellschädigung über Viabilitätsmarker und Farbstoffe dokumentiert werden. Insgesamt kombiniert diese Arbeit moderne Methoden der Molekularbiologie, Zellkultur, Fluoreszenzmikroskopie und Durchflusszytometrie zur Etablierung eines experimentellen Systems zur Untersuchung zellbasierter Immuntherapien. Dabei wurden erste funktionelle und methodische Grundlagen geschaffen, auf denen zukünftige Validierungen und Optimierungen aufbauen können.

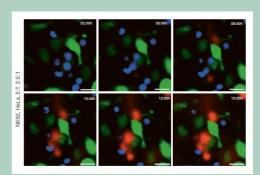


Abb. 1: Bildbasierter Killing Assay: HeLa-Zellen (CellTracker™ Green) in Co-Kultur mit NK-92-Zellen (Hoechst), aufgenommen mit dem Cytation™ 5 Imaging Reader. Zur Detektion toter Zellen wurde Propidiumiodid (rot) verwendet. Die zeitaufgelöste Aufnahme über 15 Stunden zeigt Zell-Zell-Interaktionen und eine Zunahme PI-positiver Zielzellen als Hinweis auf NK-vermittelte Zytotoxizität.

Verfahrenstechnische Charakterisierung und Adaption von gerührten Bioreaktoren und Airlift-Systemen für die Pilzkultivierung

Diplomand	Denis Evdokimov
Korrektoren ZHAW	Dr. Cedric Schirmer, Prof. Dr. Lukas Neutsch

Ziel dieser Arbeit ist die verfahrenstechnische Charakterisierung zweier gerührter Bioreaktoren mit Arbeitsvolumina von 50 l und 12 l sowie die anschliessende Umrüstung eines 50 L-Rührkesselbioreaktors zu einem Airlift-System zur Kultivierung von Penicillium nalgiovense.

In einem ersten Schritt wurden die Mischzeit (t_m) , der volumetrische Sauerstoffübergangskoeffizient (k La) und der spezifische Energieeintrag (P/V) in beiden Rührkesselreaktoren experimentell gemäss den DECHEMA-Methoden bestimmt. Auf Basis dieser Daten sowie ergänzender Literaturangaben erfolgte eine Simulation zur Auslegung des inneren Risers – dem zentralen

Bauteil eines Airlift-Bioreaktors, das die Zirkulation des Mediums ermöglicht.

Im Rahmen der Simulation wurden zulässige Wertebereiche für kritische Parameter wie Gas- und Flüssigkeitsgeschwindigkeit sowie kla-Werte bei variierenden Riser-Durchmessern berechnet. Daraus wurde ein Riser mit 24.5 cm Durchmesser entworfen, der unter Berücksichtigung technischer Einschränkungen eine hohe Flexibilität der Betriebsparameter erlaubt.

Abschliessend erfolgte eine Kultivierung von *Penicillium nalgiovense* im 50 L-Rührkesselbioreaktor. Dabei konnten wesentliche biotechnologische Kenngrössen wie

die Wachstumsgeschwindigkeit (µ), die Ausbeute (Y) und Sättigungskonstante (ks) ermittelt werden. Diese bilden zukünftig die Grundlage für die Übertragung des Prozesses auf das neu konzipierte Airlift-System.

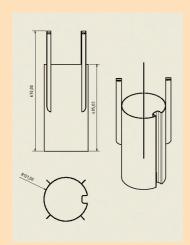


Abb. 1: Riser-Konstruktion mit Hauptabmessungen in drei Ansichten.

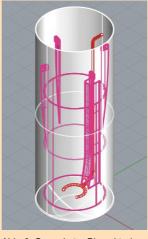


Abb. 2: Gerenderter Bioreaktorkessel mit eingebautem Riser in isometrischer Ansicht.

Untersuchung von Hyaluronsäureproduktion mittels *E. coli* (vertraulich)

Diplomand	Yannik Ezekwu
Korrektoren ZHAW	Dr. Thomas Schwander, Prof. Dr. Thomas Pielhop

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Hyaluronsäure ist ein natürlich vorkommendes Polysaccharid mit vielfältigen biologischen Eigenschaften, darunter entzündungshemmende, viskoelastische und polsternde Wirkungen. Aufgrund dieser Merkmale findet sie breite Anwendung in der Medizin, etwa zur Behandlung von Gelenkerkrankungen, sowie in der kosmetischen Industrie als Filler.

Die industrielle Herstellung erfolgt derzeit vorwiegend mit pathogenen Streptokokken-Stämmen, was mit erheblichen ökonomischen und ökologischen Nachteilen verbunden ist. Ziel dieser Bachelorarbeit war es daher, ein alternatives, nachhaltigeres Produktionssystem auf Basis des nicht-pathogenen Modellorganismus Escherichia coli zu untersuchen. Zu diesem Zweck wurden Plasmide mit den für die Biosynthese essenziellen Genen in E. coli exprimiert, um die Produktion von Hyaluronsäure zu ermöglichen.

Im Zentrum der Arbeit stand die Steigerung der Hyaluronsäure-Produktion durch gezielte genetische Modifikationen. Ein weiterer Schwerpunkt war die Etablierung und Validierung analytischer Methoden

zur Quantifizierung sowie zur strukturellen Charakterisierung der rekombinant hergestellten Hyaluronsäure.

Die experimentellen Arbeiten umfassten die Kultivierung in Schüttelkolben und Fed-Batch-Bioreaktoren sowie den Einsatz verschiedener analytischer Verfahren, darunter UV/Vis-Spektroskopie, Grössenausschlusschromatographie (SEC), Hochleistungsflüssigchromatographie (HPLC), Flüssigchromatographie-Massenspektrometrie (LC-MS) und Kernspinresonanzspektroskopie (NMR). Die Arbeit verknüpft somit zahlreiche Studieninhalte aus den Bereichen Molekularbiologie, Bioprozessentwicklung und Analytik.

Die Ergebnisse dieser Arbeit leisten einen Beitrag zur Entwicklung eines biotechnologischen und ökologisch vorteilhaften Produktionsverfahrens für Hyaluronsäure.

Herstellung von funktionalisierten extrazellulären Vesikel für den Transport von DNA als Medikament

Diplomand	Samuel Faust
Korrektor/-in ZHAW	Prof. Dr. Jack Rohrer, Lena Mara De León Esperón

Aufgrund des wachsenden Verlangen der Pharmaindustrie – besonders im Kontext zur Behandlung neurologischer Krankheiten – Medikamente durch die Blut-Hirn-Schranke schleusen zu können, wurden extrazelluläre Vesikel (EVs) entwickelt, welche diese möglichst überqueren können.

In dieser Arbeit wurde ein experimenteller Workflow zur Herstellung, Modifikation und Charakterisierung von nano-plasmamembrane vesicles (nPMVs) aus HEK293T-Zellen entwickelt. Im Zentrum stand dabei die Etablierung eines Systems zur effizienten Beladung von nPMVs mit DNA mittels Elektroporation sowie die quantitative und qualitative Analyse der Vesikel.

Zur Erzeugung der nPMVs wurden HEK293T als Donorzellen verwendet, welche ein mCherry-hFcyRI-Fusionsprotein exprimierten. Die Präsenz des Fusionsproteins wurde durch Immunofluoreszenz erfolgreich nachgewiesen. Durch FACS-basierte Einzelzellklonierung wurden stark exprimierende Zellen selektiert. Der resultierende Klon A9 zeigte initial eine hohe und homogene mCherry-Expression, wobei in späteren Passagen ein leichter Rückgang der mittleren Fluoreszenzintensität (MFI) beobachtet wurde.

Durch chemische Induktion der Apoptose in den HEK293T-Zellen wurden giantplasma-membrane-vesicles (gPMVs) hergestellt, welche anschliessend durch Extrusion erfolgreich zu nPMVs prozessiert wurden. Die nPMVs wurden mittels Nanopartikel-Tracking-Analyse (NTA) sowie durch Scanning electron microscopy (SEM) charakterisiert. Die Beladung der nPMVs mit DNA erfolgte über Elektroporation, wobei der Effekt unterschiedlicher Buffer sowie DNA:Vesikel Verhältnisse auf die Aufnahme-Effizienz untersucht wurden (siehe Abbildung 1). Die Ergebnisse wurden anschliessend durch gPCR quantifiziert. Somit konnte erfolgreich ein alternativer Buffer als möglicher, kostengünstigerer Ersatz etabliert werden. Die Arbeit legt eine Grundlage für zukünftige Standardisierungsstrategien in der Vesikelbeladung und -charakterisierung mit potenzieller Relevanz für biomedizinische Anwendungen.

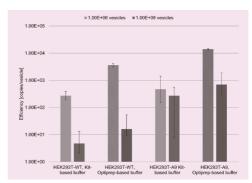


Abb. 1: Quantifizierung der Aufnahme-Effizienz bei Elektroporation von nPMVs und DNA. Die Effizienz scheint bei erhöhtem DNA:Vesikel Verhältniss sowie der Wahl des alternativen Buffers erhöht zu sein. X-Achse: Donorzellen aus welchen die nPMVs hergestellt wurden sowie der verwendete Buffer, Y-Achse: Aufnahme-Effizienz in DNA-Kopien pro Vesikel.

Verfahrenstechnische Charakterisierung eines Zellkultivierungssystems (mit Kuhner TOM) mittels CFD

Diplomandin	Lara Gassmann
Korrektor/-in ZHAW	Dr. Judith Krautwald, MSc Samuel Schneider

Die numerische Strömungssimulation (Computational Fluid Dynamics, CFD) gewinnt zunehmend an Bedeutung in der biotechnologischen Prozessentwicklung, da sie präzise Einblicke in das Strömungsverhalten innerhalb von Kultivierungssystemen erlaubt und die Anzahl ressourcenintensiver Laborexperimente verringert. Ziel dieser Bachelorarbeit war die Analyse der Strömungsverhältnisse des Gasflusses in einer T-Flasche mit 25 cm² Wachstumsfläche und integriertem Kuhner TOM-Messsystem mithilfe von CFD. Zudem sollte ein effizienter Simulationsprozess auf Basis frei verfügbarer Open-Source-Software etabliert werden.

Die Simulation erfolgte mit OpenFOAM, einem textbasierten Programm zur numerischen Strömungsberechnung. Ergänzend wurde Salome CFD eingesetzt. Diese *Open-Source-*Software erlaubt die CAD-gestützte Modellierung komplexer Geometrien sowie die Generierung verschiedener Rechengitter in einer grafischen Umgebung. Bewertet wurden Benutzerfreundlichkeit, Funktionalität und Leistungsfähigkeit von Salome CFD im Vergleich zu klassischen OpenFOAM-Werkzeugen in Kombination mit CAD.

Erstellt wurden hybride Rechengitter in drei Feinheitsgraden mit Salome CFD sowie ein blockstrukturiertes Gitter mit snappy-HexMesh in OpenFOAM. Die Gitter wurden hinsichtlich Qualität, Konvergenz und Rechenzeit bewertet. Die Resultate wurden mit ParaView visualisiert. Eine exemplarische Simulation ist in Abbildung 1 dargestellt.

Salome CFD zeigte sich als benutzerfreundliche und leistungsfähige Open-Source-Alternative, insbesondere zur Erstellung hybrider Rechengitter. Die strukturierte Gittergenerierung erwies sich hingegen als anspruchsvoll und setzt eine vertiefte methodische Einarbeitung voraus. Bei entsprechender Einführung und vorhandenen CFD-Grundkenntnissen eignet sich Salome CFD jedoch gut für den Einsatz im Hochschulkontext.

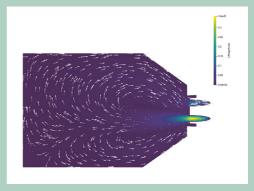
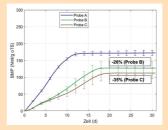


Abb. 1: Visualisierung der Strömungsgeschwindigkeit im Strömungsvolumen der Modellsimulation, ausgewertet in ParaView.

Methodenentwicklung und Analyse der Effizienz von Feststoffvergärungsanlagen an einem Praxisbeispiel (vertraulich)



Diplomand	Ryan Graf
Korrektor ZHAW	Dr. Hans-Joachim Nägele

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer Praxisanlage durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Die effiziente Nutzung organischer Abfälle ist eine zentrale Herausforderung für die klimafreundliche Energiegewinnung und die Förderung der Kreislaufwirtschaft. In der Schweiz werden rund 160 reststoffverwertende Biogasanlagen betrieben, von denen etwa zehn als Feststoffvergärungsanlagen geführt werden. Betreibern solcher Anlagen mangelt es jedoch an geeigneten Methoden zur Effizienzbewertung. Ziel dieser Bachelorarbeit war es, durch Prozessanalyse die Effizienz der Boxenvergärung einer Biogasanlage unter realen Bedingungen zu bewerten und Optimierungspotenziale aufzuzeigen. Im Fokus stand der Finfluss der betrieblich üblichen Vorkompostierung auf das biochemische Methanpotenzial (BMP) des eingesetzten Grünguts sowie die Auswertung historischer Betriebsdaten. Hierzu wurde in Laborversuchen das BMP eines Grüngutsubstrats nach VDI 4630 bestimmt. Getestet wurden drei Vorkompostierungsdauern (0, 3 und 7 Tage) unter standardisierten Bedingungen mit dem AMPTS II-System. Ergänzend wurden Betriebsdaten der Jahre 2016 bis 2024 systematisch analysiert - mit Fokus auf Substrateinsatz, Energieerträge, Still-

stands Zeiten und Kompostvolumen. Die Laborversuche zeigten, dass bereits drei bzw. sieben Tage Vorkompostierung das BMP um 26 % bzw. 35 % reduzierten (Abb. 1). Die Analyse der historischen Daten offenbarte weitere Schwachstellen: fehlende Einzelmessungen der Boxen. unzureichende Substraterfassung sowie das Fehlen einer energetischen Bewertung der Vorkompostierung. Zudem wurde das Blockheizkraftwerk mit nur 63 % seiner Leistung betrieben. Aufbauend auf diesen Erkenntnissen wurden praxisnahe Ansätze zur Verbesserung der Datenerhebung, Prozessführung und Energieeffizienz entwickelt. Eine Potenzialanalyse ergab, dass durch gezielten Einsatz frischer Substrate eine Steigerung der Biogasausbeute um rund 25 % möglich ist - mit einem wirtschaftlichen Mehrertrag von bis zu 50'590 CHF pro Jahr. Diese Arbeit leistet einen methodischen Beitrag zur Effizienzbewertung von Boxenvergärungsanlagen und unterstreicht die Notwendigkeit systematischer Messtechnik, wissenschaftlicher Begleitung und überbetrieblicher Vergleichbarkeit zur

Optimierung dieses Anlagentyps.

Abb. 1: Vergleich der Ansätze des BMP-Tests.

Fed-Batch-basierte Produktion monoklonaler Antikörper in einem Single-Use Bioreaktor unter Berücksichtigung bioverfahrenstechnischer Aspekte (vertraulich)

Diplomandin Jeannine Gujer

Korrektor/-in ZHAW Prof. Dr.-Ing. Regine Eibl-Schindler, Dr.-Ing. Jan Ott

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Monoklonale Antikörper (mAbs) zählen zu den bedeutendsten Wirkstoffen der modernen Medizin und finden insbesondere in der Therapie von immunologischen und onkologischen Erkrankungen breite Anwendung. Ihre biotechnologische Herstellung erfolgt typischerweise mit CHO-Zellen unter streng kontrollierten Bedingungen, wobei Single-Use Bioreaktoren zunehmend an Bedeutung gewinnen. Diese bieten Vorteile hinsichtlich Prozesssicherheit, Flexibilität sowie reduzierter Reinigungs- und Validierungsaufwände.

Im Rahmen dieser Bachelorarbeit wurde ein 5 L Single-Use-Bioreaktor bioverfahrenstechnisch charakterisiert und seine

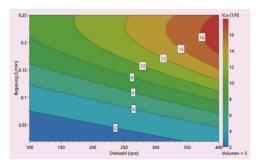


Abb. 1: Ergebnisse der kLa-Messungen bei einem Füllvolumen des Reaktors von 5 L.

Eignung für die Produktion monoklonaler Antikörper mit ExpiCHO-S-Zellen untersucht. Dabei wurden unter verschiedenen Betriebsbedingungen zentrale Prozessparameter wie Sauerstoffübertragungsraten (kLa) und Mischzeiten experimentell erfasst. Ergänzend wurden mehrere Fed-Batch-Kultivierungen in verschiedenen Kultivierungssystemen durchgeführt, um Zellwachstum, Metabolitenverläufe und Antikörperbildung vergleichend zu analysieren. Zusätzlich kamen zwei automatisierte online-Durchflusszytometer zu Einsatz, um deren Integration in tierische Zellkulturprozesse zu evaluieren und das Potenzial für eine kontinuierliche Prozessüberwachung zu prüfen.

Die erzielten Ergebnisse zeigen, dass der untersuchte Bioreaktor unter praxisnahen Bedingungen stabile und reproduzierbare Prozessparameter ermöglicht und die für CHO-Zellen relevanten Kriterien hinsichtlich Sauerstoffversorgung (Abb. 1) und Mischzeitverhalten erfüllt. Die IgG-Konzentrationen lagen innerhalb des angestrebten g/L-Bereichs. Die online-Durchflusszytometer erwiesen sich grundsätzlich als geeignete Geräte zur Prozessüberwachung.

Neue Wirkstoffe gegen antibiotikaresistente Bakterien: Rekombinante Herstellung und Charakterisierung der Peptidoglykanhydrolase PGH_PB58 (vertraulich)

Diplomandin	Sophie Heitele
Korrektor ZHAW	PD Dr. Mathias Schmelcher
Korrektor extern	Dr. Fritz Eichenseher

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer Firma durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Untersuchung von Helikasen zur Optimierung einer isothermen DNA-Amplifikationsmethode (vertraulich)

Diplomand Julian Hofmann

Korrektor/-in ZHAW Dr. Kerstin Gari, Tobias Wermelinger

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Im Rahmen eines übergeordneten Forschungsprojekts verfolgte die Bachelorarbeit das Ziel, eine alternative Methode zur Amplifikation genetischen Materials ohne die Verwendung eines Thermozyklers zu entwickeln. Im Fokus stand dabei die Optimierung der Helikasen-abhängigen Amplifikation (HDA), einer isothermen Amplifikationsmethode, die den zellulären Replikationsprozess imitiert und im Gegensatz zur klassischen PCR keine zyklisch wechselnde Temperaturführung erfordert. Besonders in ressourcenarmen Regionen könnte der Finsatz solcher Verfahren die Diagnostik von pathogenen Keimen in Lebensmitteln und anderen mikrobiologischen Proben erheblich erleichtern. Zur Realisierung dieses Ziels wurden drei potenzielle Helikasen aus Geobacillus stearothermophilus rekombinant in Escherichia coli exprimiert, aufgereinigt und funktionell charakterisiert. Dabei konnten zwei der Proteine durch zwei Affinitätschromatographieschritte und eine Entsalzung auf dem ÄKTA pure™ System aufgereinigt werden. Im Anschluss daran wurden die Proteine mit verschiedenen DNA-Substraten auf ihre Bindungsfähigkeit und ihre Eignung zur DNA-Auftrennung getestet. Bei einem der Proteine wurde neben der Helikaseaktivität eine unerwünschte Nukleaseaktivität festgestellt, die durch eine gezielte Punktmutation erfolgreich eliminiert werden konnte. In einem weiteren Schritt wurde mit dem modifizierten Enzym ein HDA-Versuch durchgeführt, um die Eignung für eine isotherme Amplifikation zu überprüfen. Die Ergebnisse dieser Arbeit liefern wertvolle Erkenntnisse zur Auswahl geeigneter Helikasen für die HDA-Methode und leisten einen Beitrag zur Weiterentwicklung einfacher, kostengünstiger und infrastrukturell weniger aufwendiger molekularbiologischer Nachweismethoden.

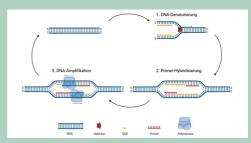


Abb. 1: Helikasen abhängige Amplifikation als Prozess schematisch dargestellt.

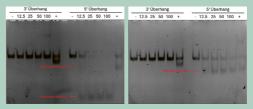


Abb. 2: Helikaseaktivität und Nukleaseaktivität von Wildtyp Protein [nM] (links) und Helikaseaktivität von mutiertem Protein [nM] (rechts) mit DNA-Überhang-Substrat.

Untersuchung von Stoffwechselwegen zur Steigerung der Kulturleistung von *L. tarentolae* in chemisch definierten Medien (vertraulich)

Diplomandin Emilija Jankovic

Korrektor/-in ZHAW Dr. Iris Poggendorf, MSc Benjo Dutli

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Diese Bachelorarbeit entstand in enger Zusammenarbeit mit dem Biotechnologieunternehmen GlycoEra AG, das neuartige Biologika zur Behandlung von Autoimmunerkrankungen entwickelt.

Die Arbeit verfolgte das Ziel, die Stoffwechselwege des innovativen, nichthumanpathogenen, *L. tarentoale* Expressionssystems, das auf der proprietären Glyco-Engineering-Plattform von Glyco-Era AG aufsetzt, eingehend zu charakterisieren. Darauf aufbauend sollen dann Strategien entwickelt werden, mit denen sich der Zellmetabolismus gezielt steuern lässt, um die Produktausbeute zu erhöhen.

Die zentrale Aufgabe besteht darin, die Entstehung wachstumshemmender Nebenprodukte zu minimieren. Da der Einzeller das Zielmolekül vor allem während der exponentiellen Wachstumsphase bildet, muss die Nebenprodukt-Synthese in diesem Stadium konsequent unterdrückt werden.

Zur Lösung dieses Problems wurde das etablierte chemisch definierte Medium Schritt für Schritt angepasst, indem bestimmte Komponenten weggelassen oder neue Supplemente hinzugefügt wurden. Anschliessend wurden die angepassten Formulierungen in unterschiedlichen Kultivierungssystemen geprüft: Batchversuche wurden im Kleinmassstab in Schüttelkolben und BioLector Mikroreaktoren durchgeführt, während Minifors Benchtop-Bioreaktoren mit einem Fassungsvermögen.

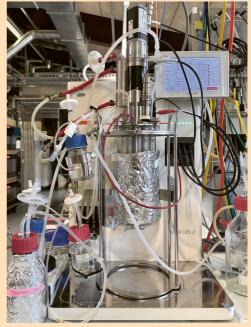


Abb. 1: Minifors Bioreaktor im Fed-batch Prozess.

Nachhaltige Herstellung von Hyaluronsäure aus lignocellulosehaltiger Biomasse mittels *Escherichia coli* BL21(DE3) (vertraulich)

Diplomandin	Sheena Jove
Korrektoren ZHAW	Prof. Dr. Thomas Pielhop, MSc Matthias Eckl, MSc Johannes Ruhnke

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Nachhaltige biobasierte Rohstoffe gewinnen angesichts der Verknappung fossiler Ressourcen und des globalen Klimawandels zunehmend an Bedeutung. Besonders nicht essbare, lignocellulosehaltige Biomasse (LCB), wie etwa Holz und Stroh. bietet sich als wertvolle Rohstoffquelle an. LCB eignet sich zur Gewinnung nachhaltiger Treibstoffe und biobasierter Chemikalien und hat das Potenzial, zur Herstellung von wertschöpfenden Produkten wie Hyaluronsäure (HA) eingesetzt zu werden. HA ist ein vielseitig einsetzbares Biopolymer mit Anwendungen in Medizin und Kosmetik. In dieser Bachelorarbeit wurde die Eignung des erhaltenen Zuckerstroms aus der Lignocellulose für die HA-Produktion mit einem genetisch modifizierten Escherichia coli Stamm untersucht. Dazu wurden die LCB-Rohstoffe Fichten- und Buchenholz sowie Weizenstroh zunächst einer Heisswasserbehandlung unterzogen, um die kompakte Lignocellulose-Struktur aufzubrechen. Zur Charakterisierung der aufgeschlossenen Biomassen wurde deren Zusammensetzung hinsichtlich Cellulose, Hemicellulose und Lignin analysiert. Anschliessend erfolgte eine enzymatische Hydrolyse, um Zucker aus Cellulose und Hemicellulose freizusetzen.

Die hergestellten Zuckerlösungen wurden nachfolgend in einem geeigneten Kulturmedium als Substrat für die Kultivierung von Escherichia coli zur HA-Produktion verwendet. Um die Reinheit und die Nachweisbarkeit des Produkts zu verbessern. wurden verschiedene Ansätze zur Aufreinigung untersucht. Mittels Kernspinresonanz-Spektroskopie (NMR) wurde die Anwesenheit von HA überprüft und zur Bestimmung der Konzentration wurde ein Turbidimetrie-Assay angewendet. Zudem erfolgte die Untersuchung der Zuckerlösungen auf Nebenprodukte mittels Gaschromatografie-Massenspektrometrie (GC-MS). Die gewonnenen Erkenntnisse, die auf der erfolgreichen Fermentation des LCB-Zuckerstroms beruhen, bilden eine fundierte Grundlage für weitere Prozessoptimierungen und eröffnen Perspektiven für eine verbesserte Nutzung agroindustrieller Reststoffe zur Gewinnung hochmolekularer HA.

Abb. 1.: Fällung mit Ethanol nach der E. coli-Kultivierung. Der entstandene Niederschlag weist auf die Bildung von Hyaluronsäure (HA) hin.

Immunmodulation mithilfe von extrazellulären Vesikeln: Umpolarisierung tumorassoziierter protumorigener M2-Makrophagen in anti-Tumor-M1-Markophagen (vertraulich)

Diplomand Jann Keller

Korrektorinnen ZHAW Prof. Dr. Steffi Lehmann, Dr. Ina Albert

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der ZHAW durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst. Makrophagen sind zentrale Akteure der angeborenen Immunantwort und spielen eine entscheidende Rolle in der Tumormikroumgebung (TME). Tumorassoziierte Makrophagen (TAMs) vom anti-inflammatorischen M2-Typ fördern das Tumorwachstum, unterdrücken Immunantworten und tragen zur Resistenz gegen Therapien bei. Eine erhöhte Präsenz von M2-polarisierten TAMS in Tumoren korreliert deshalb mit einer schlechten Prognose für Krebspatient:innen. Neue therapeutische Ansätze, welche diese Zellen in einen proinflammatorischen antitumoralen M1-Zustand überführen, könnten Abhilfe schaffen und in Zukunft neue Wege für effektivere Tumortherapien eröffnen. In dieser Bachelorarbeit wurde untersucht, ob Extrazelluläre Vesikel (EVs) von M1-polarisierten Makrophagen dazu genutzt werden können, in Makrophagen einen proinflammatorischen M1-Zustand zu induzieren. Zunächst wurde mithilfe von Immunfluoreszenzfärbungen die Expression von Markern auf M1 und M2-polarisierten Makrophagen analysiert. Ziel dieser Versuche war es. Marker zu identifizieren, mit welchen die unterschiedlichen Makrophagen Profile gut differenziert werden konnten. Dazu wurden THP-1-7el-

len sowie primäre CD14+-Monozyten aus humanem Blut zu Makrophagen differenziert und in M1- bzw. M2-Phänotypen polarisiert. Die Resultate von diesen Experimenten zeigten, dass sowohl CD206 als auch CD38, zwei Makrophagen Oberflächenproteine, dazu genutzt werden können, M1 und M2 Makrophagen zu unterscheiden. Im nächsten Schritt wurden EVs von M1-Makrophagen isoliert und bzgl. Grösse charakterisiert, bevor sie zu unpolarisierten Makrophagen hinzugefügt wurden. 24 h nach EV Behandlung war ein Wechsel in der Expression von Oberflächenmarkern festzustellen: Die CD38-Expression stieg deutlich an, was auf eine erfolgreiche Polarisierung in Richtung M1 hindeutet. Unsere bisherigen Ergebnisse zeigen, dass EVs zumindest dafür eingesetzt werden können, in unpolarisierten Makrophagen einen proinflammatorischen M1 Phäntotyp zu stimulieren. Inwiefern die Vesikel auch in der Lage sind, TAMs umzuprogrammieren, bleibt noch offen und muss in weiteren Experimenten analysiert werden.

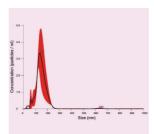


Abb. 1: Nanopartikel-Tracking-Analyse (NTA) der isolierten EVs. Das Histogramm zeigt die Partikelgrössenverteilung mit einem dominanten Peak bei 132 nm, was der typischen Größe extrazellulärer Vesikel entspricht.

Analytical and Process Based Investigation of Biomass Pigmentation and Lipid Quantification in Yarrowia Lipolytica (vertraulich)

Diplomandin	Filzah Khan
Korrektor/-in ZHAW	Prof. Dr. Lukas Neutsch, Mag. pharm. Katharina Übelhör
Korrektor extern	Dr. Erdem Carsanba, Cosaic

Das beschriebene Projekt steht unter Geheimhaltungspflicht und wurde in Zusammenarbeit mit der Firma COSAIC durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Im Rahmen des Projekts wurde die ölbildenden Hefe Yarrowia lipolytica kultiviert, die für seine Fähigkeit zur Lipidspeicherung bekannt ist. Während bestimmter Kultivierungsphasen kam es zu einer unerwarteten Verfärbung der Biomasse. Dieses Phänomen war bislang nicht dokumentiert und deutete auf die mögliche Bildung einer bislang nicht charakterisierten Verbindung hin.

Ziel der Arbeit war die Entwicklung einer geeigneten Analysemethode, mit der diese Verfärbung reproduzierbar erfasst und die zugrunde liegende Verbindung eingeordnet werden kann. Dazu wurden Extraktionsstrategien erarbeitet und verschiedene analytische Verfahren eingesetzt, darunter Dünnschichtchromatographie (HPTLC), UV-Vis-Spektroskopie, LC-MS und Fluoreszenzmessungen. Die Verbindung zeigte eine spezifische Löslichkeit in organischen Lösungsmitteln und erwies sich als empfindlich gegenüber Licht und physikalischem Stress.

Die entwickelte Methodik ermöglicht eine vergleichende Analyse von Proben hinsichtlich ihrer Färbungseigenschaften und schafft eine Grundlage für weiterführende Untersuchungen zur chemischen Struktur sowie zu den Bedingungen, unter denen die Verbindung entsteht.

Die Ergebnisse tragen zum besseren Verständnis wenig erforschter Stoffwechselprozesse bei und unterstreichen die Bedeutung analytischer Verfahren zur Aufklärung unerwarteter Phänomene in der industriellen Biotechnologie.

Ein Produktionssystemwechsel einer Cellulase

Diplomandin	Michèle Lea Kovacs
Korrektoren ZHAW	Dr. Thomas Schwander, MSc Claudio Kalbermatten

Die effiziente Nutzung lignocelluloser Biomasse zur Energiegewinnung erfordert leistungsfähige Enzyme für den Abbau pflanzlicher Zellwände. CelA, eine Cellobiohydrolase aus dem anaeroben Pilz Neocallimastix patriciarum, zeigt hohe Prozessivität gegenüber Cellulose und ist damit ein vielversprechendes Werkzeug für Biogasanwendungen. Ziel dieser Arbeit war es, das CelA-Gen aus einem bakteriellen Expressionssystem (E. coli) in die eukaryotischen Wirte Saccharomyces cerevisiae und Pichia pastoris zu übertragen, um die funktionelle Expression in Hefe zu ermöglichen.

Hierfür wurde CelA zunächst in die Expressionsvektoren pYES2 (S. cerevisiae) und pPICZa-A (P. pastoris) kloniert. Nach der erfolgreichen Transformation in E. coli NEB 10-beta konnte die Insertpräsenz durch Sequenzierung bestätigt werden. Die Transformation von S. cerevisiae mit pYES2 CelA führte zu Kolonien auf Uracilselektivem Medium, was die Aufnahme des Plasmids belegte. Eine SDS-PAGE-Analyse zeigte jedoch kein eindeutig sichtbares Proteinband in der erwarteten Grösse (~53 kDa), während der DNS-Assay eine exponentielle Zunahme der Enzymaktivität von ca. 0.6 U/mL auf 3.2 U/mL innerhalb von 8 h Induktion dokumentierte. Dies deutet auf eine funktionelle Expression des CelA-Enzyms in S. cerevisiae hin.

Im Gegensatz dazu blieb die Transformation von *P. pastoris* mit dem linearisierten pPICZα-A_CelA-Plasmid ohne Erfolg, vermutlich aufgrund einer zu geringen Menge linearer DNA.

Zusätzlich wurden Stabilitätstests des in *E. coli* exprimierten CelA durchgeführt, die zeigten, dass das Enzym bei 4 °C wie auch bei –20 °C über mindestens fünf Wochen weitgehend aktiv bleibt, während es bei –20 °C niedrigere Aktivität aufwies.

Die Ergebnisse belegen, dass *S. cerevisiae* prinzipiell als Produktionssystem für funktionelles CelA geeignet ist, während für *P. pastoris* eine Optimierung der DNA-Aufbereitung notwendig ist. Die Arbeit liefert damit eine Grundlage für die weitere Entwicklung eukaryotischer Expressionssysteme zur Bereitstellung von CelA und anderen Enzymen für biotechnologische Anwendungen, etwa zur Verbesserung des Aufschlusses von Cellulose in Biogasanlagen.

Herstellung von Mikrotumoren für die funktionale Präzisionsmedizin

Diplomandin	Liesa Kunz
Korrektoren ZHAW	Dr. Markus Rimann, Prof. Dr. Michael Raghunath

Das kolorektale Karzinom (CRC) zählt weltweit zu den häufigsten und tödlichsten Krebserkrankungen. Trotz etablierter Therapieformen wie Chemotherapie. Immuntherapie und chirurgischer Entfernung kommt es häufig zu Resistenzen oder Rückfällen, was die Entwicklung individualisierter Behandlungsstrategien erforderlich macht. Die Funktionale Präzisionsmedizin (FPM) bietet einen vielversprechenden Ansatz, indem sie die Reaktion lebender patienteneigener Tumorzellen auf verschiedene Therapien testet und so individuell angepasste Behandlungsstrategien ermöglicht. Tumorzellen können als kugelförmige drei-dimensionale (3D) Zellaggregate sogenannte Mikrotumore kultiviert werden. Da der Zugang zu Patientenzellen schwierig ist, werden häufig Tumorzelllinien als Testsystem verwendet. Diese zeigen jedoch ein unphysiologisch schnelleres Wachstum im Gegensatz zu Patienten Mikrotumoren, bedingt durch die nährstoffreichen Zellkulturmedien. Ziel dieser Arbeit war die Entwicklung eines physiologisch relevanten 3D-Mikrotumormodells basierend auf der CRC-Zelllinie HCT-116. Durch Kokultivierung mit krebsassoziierten Fibroblasten (CAFs) sollte die Tumormikroumgebung (TME) besser nachgebildet und das Wachstum der Mikrotumore reduziert werden. Die Mikrotumore wurden unter verschiedenen Kulturbedingungen mit angepasstem Glukose- und Serumgehalt getestet, um physiologische Verhältnisse

zu simulieren. Mittels mikroskopischer Analysen und der Messung der metabolischen Aktivität wurde die Effizienz der verschiedenen Kulturbedingungen hinsichtlich Tumorwachstum und Zellaktivität bewertet. Die Ergebnisse zeigten, dass sowohl das Medium als auch das Verhältnis von Tumorzellen zu CAFs einen signifikanten Einfluss auf die Morphologie und metabolische Aktivität der Mikrotumore haben. Diese Erkenntnisse sind essenziell für die Weiterentwicklung patientenspezifischer Modelle, die zukünftig in der FPM zur Medikamententestung und Therapieauswahl eingesetzt werden könnten. In Zusammenarbeit mit PreComb stellt dieses Modell eine potenzielle Plattform für die personalisierte Therapieentwicklung im Rahmen der FPM dar.

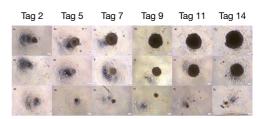


Abb. 1: Zeitlicher Verlauf der Mikrotumorbildung in physiologischen Kulturmedium ohne Phenolrot der Firma Cell Culture Technologies LLC supplementiert mit 10 %FBS. A) -F): 100 HCT-116/ Well+2500 CAF/Well, G) -L): 100-HCT-116/Well, M) -R): 2500 CAF/Well.

Ausbeuteerhöhung bei *L. tarentolae* durch Upstream Prozessoptimierung (vertraulich)

Diplomand	Charles Labaya
Korrektorin ZHAW	Dr. Iris Poggendorf
Korrektor extern	Quentin Demeyere, GlycoEra AG

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma GlycoEra AG durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Diese Bachelorarbeit befasst sich mit der Optimierung der Produktausbeute in dem innovativen Expressionssystem von GlycoEra AG. Als Plattform dient dabei der einzellige eukaryotische Parasit *Leishmania tarentolae*. Aufgrund seiner nicht-pathogenen und robusten Eigenschaften findet dieses System bereits vielfältige Anwendung in biotechnologischen Prozessen.

Im Rahmen dieser Arbeit lag der Fokus auf der Nährstoffoptimierung und der Ermittlung wichtiger Prozessparameter. Das übergeordnete Ziel war die Erhöhung der Ausbeute von bi-spezifischen Biologika. Diese werden in der Immuntherapie eingesetzt, um krankheitsverursachender Proteine zu degradieren und somit das Potenzial zur Reduzierung von Nebenwirkungen zu bieten.

Für die Durchführung dieser Experimente wurden Bioreaktoren des Typs Labfors 5 sowie Schüttelkolben für kleinere Versuche eingesetzt. Dazu wurden verschiedene Ansätze der Prozessintensivierung angewendet, wie beispielsweise die Erhöhung

der Zellzahl in der Startkultur, um eine kürzere Anpassungszeit der Zellen zu erzielen. Weiterhin wurden Feed-Optimierungsstrategien, die sowohl die Zusammensetzung des Feeds als auch die Zugabe-Strategien umfassten, entwickelt und getestet. Diese zielten darauf ab, höhere End-Zellzahlen zu erreichen und gleichzeitig der Volumenlimitation, die typischerweise in Fed-Batch-Prozessen auftritt, entgegenzuwirken.

Abb. 1: Bioreaktor-Aufbau des Labfors 5.

HTL-Rezeptoptimierung (vertraulich)

Diplomandin	Gloria Ljubas
Korrektorin ZHAW	Dr. Iris Poggendorf
Korrektor extern	Martin Zobrist, Homag AG

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma Homag AG durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Im Rahmen des Projekts wurde eine Rezepturoptimierung von Homogenized Tobacco Leaf (HTL) mit dem Ziel durchgeführt, den Tabakanteil in der Folie zu maximieren und gleichzeitig den Anteil an Bindemitteln zu minimieren. Dabei sollten die mechanischen Eigenschaften der Folie, insbesondere Reissfestigkeit und Elastizität, innerhalb vordefinierter Akzeptanzgrenzen bleiben. HTL ist eine industriell hergestellte Tabakfolie, die aus gemahlenem Tabak, Bindemitteln und Zusatzstoffen besteht. Sie wird vorrangig als Deck- oder Umblatt bei der Herstellung von maschinell gefertigten Zigarren und

Abb. 1: Zigarillos aus Füllung und umhüllt mit HTL-Folie.

Zigarillos eingesetzt (siehe Abbildung 1). Zur systematischen Versuchsplanung wurde ein experimentelles Design (Design of Experiments, DoE) eingesetzt. Die Formulierungen wurden im Labormassstab hergestellt und anschliessend hinsichtlich ihrer Verarbeitungseigenschaften und Produktqualität bewertet. Die Bewertung der Produktqualität erfolgte insbesondere anhand mechanischer Eigenschaften, wobei Zugversuche (siehe Abbildung 2) zur Bestimmung der Reissfestigkeit und Elastizität durchgeführt wurden.

Abb. 2: Zugversuchsmaschine zur Bestimmung der Elastizität und Reissfestigkeit des Tabakpapiers.

Neue Wirkstoffe gegen antibiotikaresistente Bakterien: Rekombinante Herstellung und Charakterisierung der Peptidoglykanhydrolase PGH_PB13 (vertraulich)

Diplomandin	Kimberly Lutz
Korrektor ZHAW	PD Dr. Mathias Schmelcher
Korrektor ZHAW	Dr. Fritz Eichenseher

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer Firma durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Optimierung eines wasserfreien, pflanzenbasierten Handdesinfektionsmittel mit Aloe Vera

Diplomandin	Ann Lou Mader
Korrektor ZHAW	Dr. Andreas Lardos
Korrektorin extern	Dr. Nina Vahekeni, Alter Africa

In Subsahara-Afrika zählen Durchfallerkrankungen zu den häufigsten Todesursachen bei Kindern. Eine der Hauptursachen dafür ist unzureichende Hygiene, insbesondere mangelndes Händewaschen, das die Übertragung von Krankheitserregern begünstigt. Obwohl Händewaschen mit Seife das Risiko von Infektionen deutlich reduziert, ist diese Massnahme in vielen betroffenen Regionen aufgrund fehlenden Zugangs zu sauberem Wasser und Seife nur schwer umsetzbar. Vor diesem Hintergrund verfolgte die vorliegende Arbeit das Ziel, ein wasserfreies, pflanzenbasiertes Handdesinfektionsmittel zu entwickeln. das als praktische Alternative genutzt werden kann.

Zusammenfassend zeigen die entwickelten Aloe-vera-Gele mit den ätherischen Ölen Nelken- und Teebaumöl vielversprechende antimikrobielle Eigenschaften sowie eine grundsätzlich ausreichende Stabilität für den vorgesehenen Einsatz als wasserfreies Handdesinfektionsmittel. Die RL-Formulierung erwies sich als besonders geeignet, während die K-Formulierung hinsichtlich der Textur weiter optimiert werden sollte. Für eine weitere Verbesserung der Wirksamkeit könnte eine Erhöhung des Gesamtölanteils geprüft werden. Darüber hinaus sind umfangreiche dermatologische Verträglichkeitstests sowie Prüfungen nach ISO-Normen notwendig,

um die Sicherheit und Effektivität der Produkte für den Markteinsatz zu gewährleisten.

Die Arbeit leistet damit einen wichtigen Beitrag zur Entwicklung praktikabler Hygienelösungen für Subsahara-Afrika, wo konventionelle Hygienemassnahmen oft nicht realisierbar sind. Das pflanzenbasierte, wasserfreie Handdesinfektionsgel stellt eine vielversprechende Alternative dar, um die Verbreitung von Infektionskrankheiten durch mangelnde Hygiene zu reduzieren.

Abb. 1: Aloe Vera, mit einem Blatt auf der linken Seite, der Blüte in der Mitte und im Hintergrund die Pflanze.

Entwicklung von prädiktiven Analysemethoden zur Behandlung von biotechnologischen Kultivierungen mit nanosecond pulsed-electric-field (nsPEF) (vertraulich)

Diplomand	Tobias Martin
Korrektoren ZHAW	Prof. Dr. Lukas Neutsch, MSc Marco Fluri

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma Bühler AG durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

In dieser Bachelorarbeit wurde der Einsatz von gepulsten elektrischen Feldern im Nanosekundenbereich (nsPEF) zur Behandlung von sich im Wachstum befindenden biotechnologischen Kulturen untersucht. Während nsPEF bisher vorwiegend in Anwendungen zum gezielten Abtöten von Zellen genutzt wurde, wie in der Krebstherapie, oder für die Haltbarmachung von Lebensmitteln, lag der Fokus dieser Arbeit auf dem faszinierenden gegenteiligen Effekt: Der Steigerung des Zellwachstums, durch Einsatz milderer

Behandlungsbedingungen. Um diesen Effekt zu erzielen, müssen die Behandlung-Parameter aber auf jeden Zelltyp exakt abgestimmt werden. In dieser Arbeit wurde der wachstumssteigernde Effekt mittels unterschiedlicher Analysemethoden nachgewiesen. Dies auch mit dem Ziel, für spätere Versuche die optimalen nsPEF Parameter für eine erfolgreiche Behandlung vorauszusagen zu können. Dafür wurden online-Sensoren für die Permittivität und das Oxidations-Reduktions-Potenzial (ORP), sowie Einzelzellimpedanzmessungen (IFC), Durchflusszytometrie (FCM) und kinetische Fluoreszenzassavs angewendet. Die Versuche wurden zunächst mit Yarrowia lipolytica Kulturen durchgeführt, und im weiteren Verlauf auf Escherichia Coli ausgeweitet. Mithilfe der verwendeten Analysemethoden konnte ein wachs-

tumssteigernder Effekt erfolgreich verifiziert werden und bei den Experimenten mit Yarrowia lipolytica auch die Behandlungsparameter, welche zu einem gesteigerten Wachstum führen, erfolgreich vorhergesagt werden. Die prädiktive Analytik der nsPEF Parameter für Escherichia Coli ist noch nicht abgeschlossen und Gegenstand weiterer Untersuchungen.

Abb. 1: Versuchsaufbau der Bachelorarbeit, vom Schritt der Vorkultur der Zell-kulturen, einer Kultivierung im Bioreaktor, der Behandlung im nsPEF Generator «STELLAR™» (Bühler AG) mit Permittivität- und ORP-Messung, sowie daraufolgender offline Analytik, welche eine kinetische Fluoreszenzmessung, eine OD-Wert Bestimmung sowie FCM und Einzelzellen-Impedanzmessungen in Wachstumsversuchen beinhalten.

Entwicklung eines Sensors zur vor Ort Bestimmung von PFAS (vertraulich)

 Diplomandin
 Lia Moser

 Korrektoren ZHAW
 Prof. Dr. Caspar Demuth, Dr. Juan Limon Petersen

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Per- und polyfluorierte Alkylsubstanzen (PFAS) werden seit rund 60 Jahren intensiv für verschiedenste Anwendungen wie Textilbeschichtungen und Feuerlöschschäume genutzt. In der Umwelt zeigen PFAS eine starke Neigung zur Persistenz und Bioakkumulation. In Wasser und Lebensmitteln sind sie im pikomolaren Bereich vorhanden und wirken bei Aufnahme gesundheitsschädigend. Zur Regulierung und Kontrolle von PFAS-Belastung sind Methoden für die Routineanalytik nötig. Ein Sensor zur ortsnahen Messung einzelner Leitsubstanzen kann zur Beurteilung der Belastung von PFAS-Untergruppen dienen und bietet eine praxisnahe Lösung. Ein Forschungsansatz ist die Nutzung von molecularly imprinted polymers (MIP)-Technologie in Kombination mit Voltammetrie.

In dieser Arbeit wurde die Herstellung eines MIP auf einer Goldelektrode zur quantitativen Analyse von Perfluorooctansulfonsäure (PFOS), einem bekannten PFAS-Vertreter, untersucht. Die MIP-Technologie ermöglicht die Herstellung von spezifischen Bindungsstellen in einem Polymer. Ein elektrochemisch inaktiver Analyt wie PFOS konkurriert mit einer elektroaktiven Subs-

tanz um diese Stellen. Sind Bindungsstellen durch PFOS belegt, wird weniger elektroaktive Substanz umgesetzt und das messbare Stromsignal sinkt entsprechend, wodurch auf die Analytenkonzentration geschlossen werden kann. Für die praktische Durchführung wurde das MIP mittels Elektropolymerisation synthetisiert, das eingeschlossene PFOS entfernt und mittels Differenzial-Puls-Voltammetrie (DPV) wurde ein elektroaktiver Stoff mit verschiedenen PFOS-Konzentrationen gemessen. Die erwartete Korrelation zwischen der PFOS-Konzentration und dem Peakstrom der DPV konnte im Bereich von 0.2 bis 2.25 nM PFOS in Form einer linearen Abnahme des Stromsignals mit steigender Analytenkonzentration gefunden werden. Im Bereich von 0.2 bis 11.5 nM konnte eine exponentielle Sättigungskurve erkannt werden.

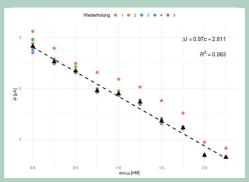


Abb. 1: Peakstrom aus DPV als Funktion der PFOS-Konzentration (lineare Regression für die Mittelwerte von Wiederholung 2–5; schwarze Dreiecke).

OMVs und Liposomen als Drug Delivery Systeme für den Transport antimikrobieller Wirkstoffe über die äussere Membran gramnegativer Bakterien (vertraulich)

Diplomandin Lara Mutlu

Korrektorinnen ZHAW Dr. Andrea Baier, MSc Laila Mara Müller, Prof. Dr. Steffi Lehmann

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Antibiotikaresistente Erreger bedrohen die globale Gesundheit. Laut WHO könnten bis 2050 weltweit rund 10 Millionen Menschen jährlich an den Folgen resistenter Infektionen sterben. Hauptursachen sind der übermässige Antibiotikaeinsatz und der globale Reiseverkehr, der die Verbreitung resistenter Bakterienstämme begünstigt. Gleichzeitig stagniert die Entwicklung neuer antimikrobieller Wirkstoffe. während bestehende Antibiotika zunehmend ihre Wirksamkeit verlieren. Besonders heraufordernd sind gramnegative Bakterien wie Escherichia coli, deren komplexe Zellwandstruktur viele Antibiotika abwehrt. Neue Wirkstoffträgersysteme wie Outer Membrane Vesicles (OMVs)

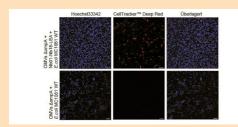


Abb. 1: Aufnahme mittels konfokaler Mikroskopie von *E.coli* MC1061 Wildtype (WT) nach Inkubation mit Nanobody-funktionalisierten OMVs (oben) und nichtfunktionalisierten OMVs als Kontrolle (unten). Die Bakterien wurden mit Hoechst 33342 (blau) und die OMVs mit CellTracker™ Deep Red (rot) markiert.

bieten hier vielversprechende Ansätze, da sie eine gezielte Wirkstoffabgabe über die äussere Zellmembran ermöglichen. In dieser Bachelorarbeit wurde eine Strategie zur Oberflächenmodifikation von OMVs für den gezielten Antibiotikatransport über die äussere Zellmembran von gramnegativen Bakterien etabliert und getestet. OMVs wurden aus genetisch modifizierten E. coli Stämmen hergestellt, mit Antibiotika beladen und mit bispezifischen Nanobodies funktionalisiert, die einerseits Proteine auf den OMVs und andererseits Oberflächenmarker von gramnegativen Bakterien spezifisch erkennen. Zum Vergleich wurden ebenfalls beladene Liposomen untersucht. Beide Trägersysteme wurden hinsichtlich physikochemischer Eigenschaften charakterisiert, mit einer Fluoreszenzfarbstoff markiert und ihre Bindung an Zielbakterien mittels konfokaler Mikroskopie untersucht. Die Beladung und antibakterielle Wirkung wurden mittels HPLC und Wachstumshemmungsversuch analysiert. Es konnte gezeigt werden, dass Oberflächenfunktionalisierte OMVs spezifisch zur äusseren Membran von gramnegativen Bakterien dirigiert und effizient mit Antibiotika beladen werden konnten. Jedoch war die Hemmung des Bakterienwachstums nur marginal. Weitere Experimente werden notwendig sein, um das System bezüglich OMV/Antibiotika Dosierung zu optimieren.

Kultivierung von strikt anaeroben methanogenen Archaeen auf synthetischen und natürlichen Medien

Korrektoren ZHAW Dr. Wolfgang Merkle, Dr. Rolf Warthmann

In dieser Bachelorarbeit wurde untersucht, inwieweit sich natürliche und synthetische Medien für die Kultivierung methanogener Archaeen eignen. Diese Mikroorganismen produzieren unter anaeroben Bedingungen Methan und sind ein zentraler Bestandteil biologischer Methanisierung, wie sie in Power-to-Gas-Konzepten eingesetzt wird.

Strom
(erneuerbare Quellen)

Wimd Wasser Sonne

H2

Wimd Wasser Sonne

Wimd Wasser Sonne

H2

Mobilität Chemische Industrie

Gas-Netz

Kohlendioxid (verschiedene Quellen)

Abb. 1: Schematische Darstellung des Power-to-Gas-Konzepts.

Ziel war es, das Wachstum und die Methanproduktion unter Verwendung verschiedener Medien und Substrate zu vergleichen. Dabei kamen sowohl ein synthetisches Medium mit definierten Nährstoffen als auch ein natürliches Medium auf Basis vorgeklärten kommunalen Abwassers zum Einsatz. Zusätzlich wurde Methanol als alternatives Substrat in verschiedenen Konzentrationen getestet.

Die Experimente wurden in zwei Stufen durchgeführt: Zum einen in geschlossenen Batch-Kulturen, zum anderen unter realitätsnäheren Bedingungen in einem halbkontinuierlich betriebenen Reaktorsystem. Zur Auswertung wurden unter anderem Gasanalysen, optische Messverfahren und chromatographische Methoden eingesetzt.

Die Ergebnisse zeigen, dass natürliche Medien grundsätzlich geeignet sind, das Wachstum methanogener Mikroorganismen zu unterstützen. Besonders niedrig dosiertes Methanol konnte die Methanproduktion fördern. Die Arbeit leistet damit einen Beitrag zur Bewertung nachhaltiger Kulturmedien und zur Weiterentwicklung biologischer Prozesse zur Energiegewinnung.

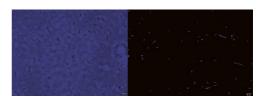


Abb. 2: Mikroskopische Aufnahmen eines NM-Ansatzes am Ende der Kultivierung. Links die Aufnahme im Phasenkontrast und rechts Fluoreszenzaufnahme unter UV-Anregung bei einer Wellenlänge von 470 nm. Beide Bilder mit 40-fach Vergrösserung.

Verfahrenstechnische Charakterisierung eines Bioreaktors (AMBR 250) mittels CFD

Diplomandin	Elisa Oegema
Korrektor/-in ZHAW	Dr. Judith Krautwald, MSc Andry Mannone

Computational Fluid Dynamics (CFD) umfasst computergestützte Methoden zur Simulation von Strömungsvorgängen und hat sich in der Bioverfahrenstechnik als unverzichtbares Werkzeug zur Prozesscharakterisierung etabliert. Diese Bachelorarbeit widmet sich der verfahrenstechnischen Charakterisierung des AMBR-250-Bioreaktors von Sartorius mithilfe von CFD. Dabei kamen Salome zur Geometrieund Gittererstellung, OpenFOAM zur Strömungssimulation und ParaView zur Auswertung der Ergebnisse zum Einsatz. Der Hauptfokus liegt dabei auf der Anwendung von Salome für die Geometrieund Gittergenerierung. Salome ist eine Open-Source-Plattform, welche die Erstellung von 3D-Geometrien und die Generierung von Gittern über eine intuitive grafische Benutzeroberfläche ermöglicht. So hebt sie sich für die Gittergenerierung von der gängigen codebasierten Software OpenFOAM ab. Ein innovativer Ansatz

Abb. 1: Optimales Gitter mit eingefärbter MRF-Zone (Cyan).

dieser Arbeit war die Nutzung von KI-gestützten Sprachmodellen, die die Einarbeitung in Salome erleichterten. Mittels Salome konnte die Geometrie des Bioreaktors erfolgreich konstruiert werden. Eine zentrale Rolle spielte die Definition der MRF-Zone (Multiple Reference Frame), welche die rotierende Bewegung des Rührers effizient simuliert, ohne ein aleitendes Gitter zu erfordern. Für die Gittergenerierung wurde eine Verfeinerungsstudie durchgeführt, die zur Bestimmung des optimalen Gitters führte (Abb. 1). Die Strömungssimulation in OpenFOAM und anschliessende Auswertung in ParaView ermöglichte eine detaillierte Visualisierung des Strömungsfelds (Abb. 2). Die Validierung der Methode erfolgte gegen bereits vorhandene experimentelle Daten des spezifischen Leistungseintrags. Die numerischen Ergebnisse wiesen eine Abweichung von nur 2,2 % zum experimentellen Wert auf, was die Genauigkeit der Methode unterstreicht.

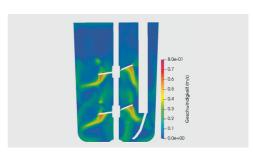


Abb. 2: Farbcodiertes Strömungsfeld der Geschwindigkeit in einer vertikalen Schnittebene durch den Bioreaktor.

Herstellung von Spheroidpatches für die Gewebetherapie (vertraulich)

Diplomandin	Jessica Okle
Korrektoren ZHAW	Dr. Markus Rimann, Prof. Dr. Michael Raghunath

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma MimiX Biotherapeutics und Hydrogelen von Gellycle durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

Das Tissue Engineering zielt unter anderem darauf ab, individuelle Behandlungsstrategien für den Verlust von Gewebe anzubieten. Dabei werden Gerüste, welche als Ersatz für die extrazelluläre Matrix dienen. Zellen und biologisch aktive Moleküle kombiniert, um funktionelles Gewebe zu erzeugen. Inzwischen ist es möglich. einfach aufgebaute Gewebe in vitro herzustellen und für therapeutische Anwendungen zu transplantieren. Ein innovativer Ansatz in diesem Bereich ist das akustische Bioprinting. Diese Methode nutzt Schallwellen, um Zellen oder Spheroide präzise und berührungsfrei in einem Hydrogel, als Gerüst, in dreidimensionale Muster zu positionieren und in der anschliessenden Kultivierung zum funktionellen Gewebe zu entwickeln. Somit können sogenannte «Patches», welche als disk-förmige Hydrogele mit integrierten Zellen auf defektes Gewebe gelegt werden können, produziert werden.

Im Rahmen dieser Arbeit wird die Machbarkeit von der Musterung von Spheroiden zu sogenannten Spheroidpatches mittels akustischem Bioprinting untersucht. Dabei wird ein akustischer Bioprinter namens CymaDX Pro verwendet, der es ermöglicht, Spheroide in einem Hydrogel mithilfe von Schallwellen gezielt in Mustern zu positionieren. Befinden sich Spheroide in unmittelbarer Nähe zueinander (ca 200 µm), fördert dies die Gewebereifung, da die lokal erhöhte Zelldichte die Zellinteraktion und -fusion unterstützt. Dazu wurden WI-38-Spheroide in zwei synthetischen Hydrogelen von Cellendes und Gellycle gemustert und die Hydrogele polymerisiert. Die so hergestellten Spheroidpatches wurden anschliessend kultiviert und das Wachstum sowie Verhalten der Spheroide bezüglich Migration und Fusion untersucht. Ziel war es, die Kompatibilität der Hydrogele mit dem CymaDX Pro sowie die Anordnung, Migration und Fusion der Spheroide zu untersuchen.

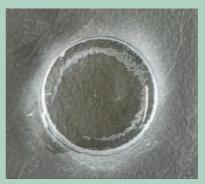


Abb. 1: Kreisförmiges Muster aus 750 Spheroiden mit jeweils 2'000 WI-38-Zellen pro Spheroid in 200 µL Hydrogel von Cellendes nach dem akustischen Bioprinting.

Zellbasierte Analyseverfahren zur optimierten Kulturführung in der regenerativen Medizin (vertraulich)

Diplomandin	Emily Ann Oswald
Korrektor/-in ZHAW	Mag. pharm. Katharina Übelhör, Prof. Dr. Lukas Neutsch
Korrektor extern	Dr. Paul Kroll, MUVON Therapeutics

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma MUVON Therapeutics durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch erläutert.

Im Fokus des Projekts stand die Entwicklung eines Verfahrens zur Kultivierung adhärenter Zellen, Zellen, die für ihr Wachstum eine feste Oberfläche benötigen. Um sowohl sicherheitstechnische als auch prozesstechnische Vorteile zu erzielen und gleichzeitig eine skalierbare Zellproduktion zu ermöglichen, wurde die Kultivierung auf Microcarriern durchgeführt. Diese Mikrometer kleinen Kügelchen bestehen aus chemisch inaktivem Material wie Kunststoff oder Glas und bieten durch ihre kompakte Form ein besonders hohes Oberflächen-Volumen-Verhältnis.

Im Vergleich zur herkömmlichen Kultivierung in T-Flaschen, bei der die verfügbare Zelloberfläche auf die Bodenfläche begrenzt ist, ermöglichen Microcarrier eine deutlich effizientere Nutzung des Kulturvolumens. Zudem verbessert die kontrollierte Umgebung im Bioreaktor zentrale Parameter wie die gleichmässige Versorgung mit Gasen und Nährstoffen, während die Ansammlung schädlicher Stoffwechselprodukte optimiert werden kann. Trotz dieser optimierten Bedingungen ist eine kontinuierliche Prozessüberwachung

entscheidend, um Veränderungen frühzeitig zu erkennen und steuernd einzugreifen. Konventionelle Analyseverfahren greifen dabei meist auf enzymatische Zellablösung zurück, was jedoch die Zellmorphologie sowie das zellspezifische Oberflächenprofil beeinflussen kann. Die Anwendung der Elektronenmikroskopie für die Analyse liefert hochauflösende Bilder, ist jedoch mit erheblichem technischen Aufwand und hohen Kosten verbunden.

Ziel dieser Bachelorarbeit war daher die Entwicklung einer zellbasierten, möglichst repräsentativen Analysemethode, die eine reale Bewertung des Zellzustands ermöglicht und zugleich praktikabel in bestehende Bioprozesse integrierbar ist.

Abb. 1: Bewachsener Microcarrier, Bildaufnahme mit Kamera.

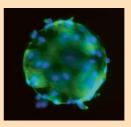


Abb. 2: bewachsener Microcarrier, Fluoreszenzmikroskopie-Aufnahme mit gefärbter Zellwand (grün) und gefärbten Zellkernen (blau).

Einfluss verschiedener Nachernteprozesse auf die Qualität von Kaffee aus Kenia

Diplomand	Patrick Pajic
Korrektoren ZHAW	Dr. Ed Wieland Sebastian Opitz, Dr. Samo Smrke

Kaffee zählt weltweit zu den bedeutendsten Agrarprodukten und wird in über 70 Ländern angebaut. Neben der botanischen Sorte und den Anbaubedingungen hat insbesondere die Nachernteverarbeitung einen entscheidenden Einfluss auf die spätere Kaffeequalität. Während traditionelle Verfahren wie das Nass- oder Trockenverfahren seit Jahrhunderten angewendet werden, sind in den letzten Jahren zunehmend innovative Methoden wie die anaerobe Fermentation in den Fokus der Forschung gerückt.

In dieser Bachelorarbeit wurden die Auswirkungen verschiedener Aufbereitungsvarianten auf physikalische und chemische Parameter analysiert. Für die physikalischen Analysen kamen Methoden wie die gravimetrische Bestimmung der Feuchtigkeit, die Messung der Wasseraktivität und die Dichtebestimmung nach dem Archimedes-Prinzip zum Einsatz. Die chemischen Analysen wurden mit modernen Verfahren, wie der Ultrahochleistungsflüssigchromatographie gekoppelt mit Massenspektrometrie (UHPLC-MS) und der Festphasenmikroextraktion mit Gaschromatographie-Massenspektrometrie (SPME-GC-MS) durchgeführt.

Untersucht wurden Zucker (Fructose, Glucose, Saccharose), Aminosäuren (u. a. Prolin, Phenylalanin, Methionin), Chlorogensäuren (CQA und FQA-Derivate), Koffein sowie flüchtige Verbindungen wie Acetaldehyd, Furfural und Guajakol.

Die Ergebnisse zeigen deutliche Unterschiede zwischen den Verfahren. Bei den flüchtigen Verbindungen wurde eine klare Abhängigkeit vom Röstgrad festgestellt, während einige Verbindungen wie Furfural zunächst ansteigen und bei dunkler Röstung wieder abfallen, nehmen andere wie Guajakol mit zunehmender Röstung kontinuierlich zu und beeinflussen die rauchigen und holzigen Noten des Kaffees.

Diese Arbeit liefert wertvolle Erkenntnisse darüber, wie stark die Nachernteverarbeitung die chemischen Grundlagen für die spätere Aromaentwicklung beeinflusst.

Melanoidine in fermentiertem Allium sativum L. Extrakt (vertraulich)

Diplomandin	Theresa Sophie Plaschke
Korrektoren ZHAW	Dr. Andreas Lardos, Dipl. Chem. (FH) Samuel Peter

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma Alpinamed durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Testen einer Software für die Vorhersage der Kristallmorphologie niedermolekularer Wirkstoffe (vertraulich)

Diplomandin	Tanja Renggli
Korrektorin ZHAW	Dr. Judith Krautwald
Korrektor extren	Dr. Lorenzo Codan, MSD

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit der Firma MSD durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Verfahrenstechnische Charakterisierung eines Bioreaktors (Thermo Fisher HyPerforma) mittels CFD

Diplomandin Sabrina Ritz

Korrektor/-in ZHAW Dr. Judith Krautwald, MSc Andry Mannone

Numerische Strömungssimulationen (*Computational Fluid Dynamics*, CFD) gewinnen in der Bioprozessentwicklung zunehmend an Bedeutung. Sie ermöglichen es, komplexe Strömungsverhältnisse am Computer sichtbar zu machen und helfen dabei, Konstruktionen sowie Betriebsbedingungen gezielt zu optimieren. Im Vergleich zu klassischen Laborexperimenten lassen sich dadurch vor allem Zeit und Kosten einsparen.

Im Zentrum dieser Bachelorarbeit stand die Frage, wie sich die vollständige CFD-Vorverarbeitung (Pre-Processing) mithilfe der Open Source Software Salome CFD umsetzen lässt. Dazu wurden die einzelnen Schritte von der Geometrieerstellung über die Gittergenerierung bis hin zur Kopplung mit dem etablierten Simulationsprogramm OpenFOAM untersucht. Die gewählte Software vereint alle notwendigen Funktionen in einem Interface und ist vollständig quelloffen, was insbesondere im Ausbildungskontext Vorteile bietet.

Am Beispiel des 3 L HyPerforma Glass Bioreactor von Thermo Fisher wurde ein vollständiger CFD-Workflow entwickelt. Neben der Erstellung einer simulationsfähigen 3D-Geometrie lag der Fokus auf der Gittererzeugung und der anschliessenden Übergabe an OpenFOAM. Das Resultat einer solchen Simulation ist exemplarisch in Abbildung 1 dargestellt.

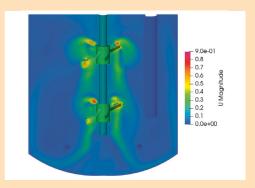


Abb. 1: Visualisierung der Strömungsgeschwindigkeit im Reaktor nach CFD-Simulation mit OpenFOAM. Die Auswertung erfolgte mit ParaView.

Die Ergebnisse zeigen, dass Salome CFD ein leistungsfähiges, jedoch anspruchsvolles Werkzeug darstellt. Für Ausbildung und Forschung eröffnet der Einsatz solcher Open Source Tools neue Perspektiven. Gleichzeitig erfordert die Anwendung eine sorgfältige Einarbeitung und ein grundlegendes Verständnis der Simulationsprozesse.

Betrieb und Datenauswertung einer häuslichen Mikro-Biogasanlage

Diplomand	Lorenzo Santoro
Korrektoren ZHAW	Dr. Wolfgang Merkle, Florian Rüsch

Die Arbeit beschäftigt sich mit dem Betrieb und der Datenauswertung einer häuslichen Mikro-Biogasanlage, die in einem realen Setting unter Alltagsbedingungen betrieben wurde. Ziel war es, herauszufinden, wie effizient organische Küchenabfälle, konkret Karotten-, Kartoffel- und Zwiebelschalen, unter verschiedenen Rahmenbedingungen in Methan umgewandelt werden können, und ob sich der energetische Aufwand dafür überhaupt lohnt. Dazu wurden standardisierte Batch-Versuche mit dem System AMPTS II durchgeführt. In mehreren Reaktoren wurden die Substrate unter drei Temperaturbedingungen (20 °C, 32 °C, 37 °C) und zwei Zerkleinerungsgraden getestet. Als Kenngrösse wurde das biochemische Methanpotenzial (BMP) gemessen, also die Menge an Methan pro Gramm organischer Trockensubstanz.

Die Ergebnisse zeigen, dass der Zerkleinerungsgrad keinen signifikanten Einfluss auf die Methanausbeute hatte. Hingegen wirkte sich die Temperatur deutlich auf die Reaktionsgeschwindigkeit aus: Höhere Temperaturen führten zu einer schnelleren Methanbildung, jedoch nicht zu einer höheren Gesamtausbeute. Zwischen 32 °C und 37 °C wurden fast identische Endwerte erreicht. Bei 20 °C war die Umsetzung deutlich langsamer und blieb auch in der Endausbeute zurück.

Ein weiterer Schwerpunkt der Arbeit war die energetische Bewertung des Anlagen-

betriebs. Die Daten zeigten, dass die eingestellte Solltemperatur von 43 °C durchgehend zu einem hohen Heizenergieverbrauch führte, unabhängig von der tatsächlichen Fermentertemperatur. Da bei 32 °C bereits vergleichbare Methanerträge erzielt wurden, wäre eine niedrigere Heizstrategie energetisch wesentlich effizienter gewesen. Die Arbeit zeigt exemplarisch, dass kleine Biogasanlagen grundsätzlich Potenzial haben, unter realen Bedingungen jedoch stark von der Prozessführung und Energieeffizienz abhängen.



Abb. 1: Bioreaktor im Fed-Batch-Betrieb. Die flexible schwarze Einheit im Vordergrund ist der Reaktor in dem die anaerobe Vergärung stattfindet. Das entstehende Biogas wird über ein Schlauchsystem zur Mess- und Zwischenspeicher weitergeleitet.

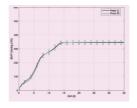


Abb. 2: Vergleich der Ansätze C1 (leicht zerkleinert) und C2 (stark zerkleinert) bei 37 °C. Dargestellt sind die Mittellwerte der spezifischen Methanbildung mit Standardab weichung (n = 3 je Substratansatz).

Messung der Biomassekonzentration und Viabilität von Zellen: Vergleich innovativer Technologien für präzise Analysen (vertraulich)

Diplomandin	Janira Scaburri
Korrektoren ZHAW	Prof. Dr. Caspar Demuth, Dr. Juan Limon Petersen

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer Firma durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst. Die präzise Überwachung zentraler Wachstumsparameter wie Zellzahl und Viabilität spielt bei der Kultivierung von Zellen eine entscheidende Rolle. In der Praxis erfolgt deren Bestimmung bislang überwiegend über Offlineanalysen, die mit manuellen Probeentnahmen und zeitverzögerter Auswertung verbunden sind. Eine unmittelbare Beurteilung des Kulturzustands im Bioreaktor ist damit nicht möglich. Bildbasierte, *in-situ* durchgeführte Analyseverfahren bieten hierfür ein vielversprechendes Potenzial.

Ziel dieser Arbeit war es, eine innovative Technologie mit bereits etablierten Messmethoden zu vergleichen. Dazu wurden CHO, THP-1 und Sf-9 Zellen in Suspension kultiviert.

Identifikation von *Neocallimastigomycota* und co-kultivierter Mikroorganismen

Diplomandin	Serna Sürer
Korrektoren ZHAW	Dr. Rolf Warthmann, MSc Claudio Kalbermatten

Neocallimastigomycota sind obligat anaerobe Pilze, die im Verdauungstrakt von Pflanzenfressern leben. Dort spielen sie eine zentrale Rolle beim Abbau von Lignozellulose. Aufgrund dieser Fähigkeit gelten sie als vielversprechende Organismen für biotechnologische Anwendungen im Bereich der Biogasproduktion. Ihre synthrophe Interaktion mit Methanogenen führt zu einer effizienten Umwandlung von lignozellulosehaltigen Materialien, wodurch diese Organismen der Biogasproduktion ökologische und wirtschaftliche Vorteile bieten könnten.

Ziel dieser Arbeit war verschiedene DNA-Extraktionsmethoden zu vergleichen, um anaerobe Pilze und co-kultivierte Mikroorganismen mittels PCR und Sanger-Sequenzierung zu identifizieren. Darüber hinaus wurde eine Kontaminationsanalyse und -minimierung durchgeführt, sowie die ITS-Diversität (Internal Transcribed Spacer) von Caecomyces sp. untersucht. Die Resultate indizieren, dass unter den getesteten Methoden das DNeasy Plant Pro Kit aufgrund seiner konsistenten Ergebnisse bei der PCR die zuverlässigste Methode für die DNA-Extraktion aus anaeroben Pilzkulturen darstellt. Die in diesem Kontext eingesetzten Primerpaare ermöglichten eine differenzierte molekulare Analyse von Pilzen, methanogenen Archaeen und Bakterien.

Die molekulare Identifikation einer Stammkultursammlung über die 28S-rRNA resultierte in nahezu allen Fällen in einer Übereinstimmung mit den erwarteten Pilzspezies Bei einer Probe deuten die Ergebnisse auf eine potenzielle Kreuzkontamination hin. Die Analyse der 16S-rRNA methanogener Archaeen führte zum Nachweis mehrerer Methanobrevibacterund Methanocorpusculum-Arten, teils auch in Kulturen, die aufgrund einer antibiotischen Vorbehandlung als methanogen-negativ erwartet wurden. Darüber hinaus konnten durch die Klonieruna und Seauenzieruna von ITS-Regionen der Gattung Caecomyces sp. zwei Sequenzvarianten innerhalb eines Isolats festgestellt werden.

Abb. 1: Mikroskopische Aufnahmen von Neocallimastigomycota (40×) unter Phasenkontrastmikroskopie.

Abb. 2: Neocallimastigomycota (40×) unter Fluoreszenzmikroskopie. Blau leuchtende Punkte deuten auf methanogene Archaeen hin.

Toxische Stoffe in der aquatischen Umwelt

Diplomandin	Céline Hélène Vollkommer
Korrektor ZHAW	Dr. Rolf Warthmann
Korrektorin extern	Dr. Sibylle Maletz

Die Freisetzung toxischer Stoffe in die Umwelt ist eine bekannte Problematik. Zur Beurteilung der Wasserqualität werden üblicherweise chemische Analysen und die Effektbeurteilung von spezifischen Stoffen durch Qualitätskriterien durchgeführt. Biotestverfahren haben gegenüber chemischen Analysen den Vorteil, dass sie sehr sensitiv sind und bereits auf geringe Mengen toxischer Substanzen reagieren. Darüber hinaus können sie auch Wirkungen unbekannter toxischer Stoffe detektieren.

In dieser Bachelorarbeit wurden Sedimente des Chriesbach mit Hilfe von in vitro Biotests auf herbizide und östrogene Aktivität untersucht. Für die Extraktion wurde der Extreva Accelerated Solvent Extractor (ASE) eingesetzt, der unter hohem Druck und erhöhten Temperaturen Verbindungen aus den Sedimenten extrahierte. Hierbei lag der Schwerpunkt auf dem Einsatz verschiedener Lösungsmittel- und Temperaturparameter. Es sollte herausgefunden werden, ob der Einsatz von Aceton bzw. Acetonitril bei verschiedenen Temperaturen zu aussagekräftigeren Werten führen würde, als andere Lösungsmittel, welche in vorhergehenden Studien verwendet wurden.

Zur Bestimmung der herbiziden Aktivität kam der kombinierte Algentest zum Einsatz, während zur Erfassung der östrogenen Aktivität der ER-CALUX® durchgeführt wurde. Beim kombinierten Algentest wurde die Inhibition des Photosystems 2 und des Wachstums der einzelligen Algenart Raphidocelis subcapitata untersucht. Die Werte des kombinierten Algentests zeigten bei den untersuchten Sedimentproben herbizide Wirkungen auf. Bei einer der Messstellen wurde durch den ER-CALUX® östrogene Aktivität festgestellt.

An einer urbanen Messstelle wurden im Rahmen des kombinierten Algen-Tests Diuron-Äquivalenz-Konzentrationen (DEQ-Werte) zwischen 6.85 und 11.59 ng/g Sediment nachgewiesen. Der ER-CALUX® erreichte die höchsten Estradiol-Äquivalenz-Konzentrationen (EEQ-Werte) bei 0.15 ng/g bei der gleichen Messstelle. Die effektivste Extraktionsmethode für die Hemmung des Photosystems II war mit Aceton bei 90 °C. Bei der östrogenen Aktivität wurden sowohl bei Aceton, wie auch bei Acetonitril bei 90 °C die höchsten Werte erzielt.

Abb. 1: Entnahme der Sedimentproben aus dem Chriesbach in Dübendorf.

Rekombinante Herstellung und Charakterisierung der Peptidoglykanhydrolase PGH_PB14 (vertraulich)

Diplomand	Vincent Vorburger
Korrektor ZHAW	PD Dr. Mathias Schmelcher
Korrektor extern	Dr. Fritz Eichenseher

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit einer externen Firma durchgeführt. Aus Gründen der Vertraulichkeit werden keine Details zur Arbeit veröffentlicht.

Investigation of Polo-Like Kinase 1 as potential therapeutic target in sarcoma (vertraulich)

Diplomandin	Viviane Werlen
Korrektor/-in ZHAW	Dr. Andrea Baier, Prof. Dr. Steffi Lehmann
Korrektorinnen extern Dr. Lara Planas-Paz, USZ, Prof. Dr. med. Chantal Pauli, USZ	

Das beschriebene Projekt steht unter Geheimhaltungspflicht. Es wurde in Zusammenarbeit mit dem Universitätsspital Zürich durchgeführt. Aus Gründen der Vertraulichkeit wird die Arbeit nur summarisch zusammengefasst.

This bachelor thesis focuses on the investigation of Polo-like Kinase 1 (PLK1) as a potential therapeutic target in the treatment of sarcomas with homologous repair deficiency (HRD) traits. Sarcomas are a rare and heterogeneous group of malignant mesenchymal tumors. PLK1 is a serine/threonine kinase that plays a critical role in multiple stages of mitosis and has been found to be overexpressed in various cancer types. The aim of this study was to evaluate the therapeutic relevance of PLK1 in sarcoma and to explore the cellular mechanisms that result from its pharmacological inhibition. Using patient-derived sarcoma cell models, the effects of PLK1 inhibition were analyzed ex vivo through the application of selective small-molecule inhibitors. The thesis examined changes in cell proliferation, centrosome structure, and cell death induction.

The results demonstrate that inhibition of PLK1 leads to a reduction in cell viability but without significant difference between the sarcoma cells with or without HRD traits. Furthermore, the data suggest that targeting PLK1 did interfere with the

maturation of the centrosomes and induced cell death significantly in cells with HRD traits. Although HRD status did not solely correlate to the efficacy of inhibitors, PLK1 expression did. These findings support the hypothesis that PLK1 plays an essential role in the survival and proliferation of sarcoma cells.

In conclusion, this work contributes to the growing body of evidence that PLK1 is a key player in tumor cell regulation and highlights its potential as a target in sarcoma therapy. Future studies will be necessary to validate these findings and to investigate possible resistance mechanisms and combination therapies.

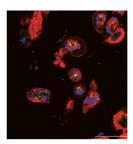


Fig. 1: Image of patient derived sarcoma cells after inhibitor treatment. Cell in mitosis with one centrosome can be seen, leading to an incorrect arrangement of condensed chromosomes.

(Scale bar = 50 µm).

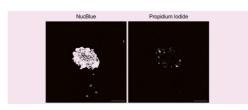


Fig. 2: Projected image of a spheroid after inhibitor treatment. Left displays the NucBlue-signal for total cell visualization, right displays Propidium iodide-signal for dying cells. (Scale bar = $200 \mu m$).

Aerobe Abbaubarkeit von biologisch abbaubaren Werkstoffen (BAW) und Isolierung beteiligter Mikroorganismen

Diplomandin Jasmin Whitworth

Korrektor/-in ZHAW Dr. Rolf Warthmann, Susanna Hüsch

Die Belastung unserer Umwelt durch erdölbasierte Kunststoffe nimmt immer grössere Ausmasse an. Wir brauchen ein gesellschaftliches Umdenken, sowie neue Ansätze bei der Produktion von Kunststoffen, wie beispielsweise die Verwendung von biobasierten und abbaubaren Ausgangsstoffen. In dieser Bachelorarbeit werden der aerobe Abbau neuartiger, biologisch abbaubarer Werkstoffe und die daran beteiligten Mikroorganismen untersucht.

Jährlich werden weltweit 414 Millionen Tonnen Kunststoff produziert. Knapp 80 % des Kunststoffs gelangt nach dem Gebrauch in die Umwelt oder wird in Deponien gelagert. Ca. 1/3 der produzierten Menge gelangt als Mikrokunststoff in Böden und Binnengewässer. Davon ist Reifenabrieb, welcher einige Jahrzehnte bis Jahrhunderte in der Umwelt persistiert, mengenmässig die grösste Quelle. Dieser Fremdpartikel hat einen direkten Einfluss auf das Ökosystem. Der Kunststoff ist unter anderem durch seine chemische Struktur von der mikrobiellen Gemeinschaft kaum abbaubar. Das führt nicht nur zur Abnahme der mikrobiellen Diversität. sondern auch zur Aufnahme von Mikropartikel über Lebensmittel oder Trinkwasser in den menschlichen Organismus. In dieser Arbeit wurde im Rahmen von standardisierten Batch-Laborversuchen der biologische Abbau eines neuartigen

Kunststoffs auf Basis von Olivenkernen der KUORI GmbH auf ihren Abbaugrad untersucht. Dazu wurde Kunststoff in zwei verschiedenen Härtegraden in Boden und Kompost eingetragen und der biologische Sauerstoffbedarf (BSB) respirometrisch bestimmt. Parallel wurde untersucht, welche Mikroorganismen beim Abbau des Kunststoffs beteiligt waren. Die Mikroorganismen aus Boden- und Kompostproben wurden auf selbsthergestellten Agarplatten kultiviert, isoliert und identifiziert sowie die Konzentration der koloniebildenden Einheiten (KBE) pro Gramm bestimmt.

Zusammenfassend wurde festgestellt, dass die Abbaugrade der Kunststoffe im Kompost höher als im Boden ausgefallen sind. Ausserdem waren möglicherweise das Bakterium *Bacillus mycoides* und ein Pilz der *Fusarium Art* zugehörig am Abbau beteiligt.

Abb. 1: Respirometrieansätze (2.5 Liter) mit Boden und Kompost im Thermoschrank. Links die Versuchsansätze mit Kompost, rechts die Versuchsansätze mit Boden. Die schwarz/gelben «Köpfe» dienen zur elektronischen Druckaufnahme.

Entwicklung von Qualitätsstandards für pflanzliche Wirkstoffe

Fachgruppe Naturstoffchemie & Phytopharmazie

Die Phytotherapie und andere komplementärmedizinische Therapieformen erfreuen sich in der Schweiz einer hohen Beliebtheit. Vermutlich wurde deshalb 2009 die Volksabstimmung zur Förderung der Komplementärmedizin von den Wählenden mit grosser Mehrheit angenommen. Die Umsetzung des seither in der Bundesverfassung verankerten entsprechenden Artikels 118a impliziert damit auch die Gewährleistung von sicheren und wirksamen Phyto-Arzneimitteln. Grundlage zur Herstellung dieser Präparate sind jedoch arzneibuchkonforme pflanzliche Ausgangsstoffe von kontrollierter Qualität.

In Zusammenarbeit mit dem Schweizerischen Heilmittelinstitut Swissmedic leistet die Fachgruppe Naturstoffchemie & Phytopharmazie durch ihre Forschungsund Entwicklungsarbeit für die Pharmakopöe einen massgeblichen Beitrag zur Erreichung dieses Ziels.

Unsere Fachgruppe erbringt in diesem Rahmen experimentelle und wissenschaftliche Arbeiten für die Erstellung und Überprüfung von Monographien der Europäischen und der Schweizerischen Pharmakopöe (Ph.Eur. und Ph.Helv.) über pflanzliche Ausgangsstoffe und deren

Abb. 1: Rosa centifolia - Rosa damascena - Rosa gallica.

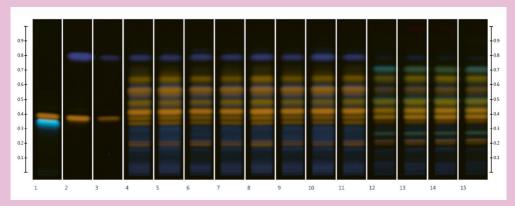


Abb. 2: HPTLC Chromatogramm.

Zubereitungen. Im Vordergrund stehen hierbei phytochemische Analysen mit flüssig-chromatographischen Methoden, wie HPTLC und HPLC.

So haben wir kürzlich an der Entwicklung einer neuen Ph.Eur.-Monographie für Rosenblüten (Rosae flos) mitgearbeitet. Ziel dabei war es. eine HPTLC-Methode für die Identitätsprüfung dieser Arzneidroge zu entwickeln. Dabei zeigte sich, dass die Inhaltsstoffgruppe der Flavonoide am besten dazu geeignet ist, Material der zutreffenden Stammpflanzen Rosa gallica L., R. centifolia L., R. damascena Herrm. chromatographisch zu charakterisieren. Blütenblätter dieser Rosenarten werden in der rationalen Phytotherapie bei leichten Entzündungen der Mund- und Rachenschleimhaut, sowie zur Linderung kleinerer Hautentzündungen eingesetzt.

Wie auch im Fall der Rosenblüten, werden bestimmte Fragestellungen der chemischanalytischen Arbeiten für die Pharmakopöe regelmässig im Rahmen von Bachelorarbeiten im Studiengang Biotechnologie behandelt, die von Experten und Expertinnen unserer Fachgruppe wissenschaftlich begleitet werden. Somit tragen auch unsere Studierenden dazu bei, dass der Bevölkerung hochwertige Phyto-Arzneimittel zur Verfügung stehen.

Kontakt

Dr. Andreas Lardos

Institut für Chemie und Biotechnologie (ICBT)

Das ICBT ist eines der naturwissenschaftlichen Institute der ZHAW. Es betreibt angewandte Forschung zu brandaktuellen Themen rund um Gesundheit, Chemie, Biotechnologie und Umwelt – von Antibiotikaresistenzen oder antiviralen Wirkstoffen über Mikroplastik bis hin zu nachhaltigeren chemischen Prozessen. In drei Bachelorstudiengängen und zwei Studienrichtungen im Master bildet das ICBT junge Menschen für den Wachstumsmarkt Life Sciences aus.

Lehre

Das ICBT bietet drei Bachelorstudiengänge an: den Bachelor in Biotechnologie mit Vertiefung «Bioprozessentwicklung und Bioengineering» oder «Molekular-, Mikround Zellbiologie», den Bachelor in Chemie mit Vertiefung «Chemie» oder «Biologische Chemie» und den Bachelor in Biomedizinischer Labordiagnostik.

Im forschungsbasierten Masterstudiengang «Master of Science of Life Sciences» werden die Vertiefungen «Pharmaceutical Biotechnology» und «Chemistry for the Life Sciences» angeboten.

Weiterbildung

Das ICBT bietet massgeschneiderte Weiterbildungsprogramme an. Individuelle Weiterbildungen für Firmen werden an den spezifischen Kundenbedürfnissen ausgerichtet. Internationale Fachtagungen und die «CAS The Science and Art of Coffee» sowie «CAS in Coffee Excellence» runden das Portfolio ab.

Forschung, Entwicklung und Dienstleistungen

Die naturwissenschaftliche Forschung des ICBT ist am Markt orientiert. Für seine Partner bringt das Institut Produkte und Verfahren voran, die das Potenzial haben, sich schnell am Markt zu etablieren.

Unsere strategischen Schwerpunkte:

- Sustainable Solutions: Wir gestalten und optimieren biotechnologische, biokatalytische und chemische Produktionsprozesse, Anlagen und Verfahren.
- Pharma Innovation: Wir erforschen und entwickeln innovative Therapeutika und suchen neue Wege zur Herstellung von Gewebemodellen für Testung, Diagnostik und Therapie.
- Detection and Diagnostics: Wir wenden instrumentell-analytische und bioanalytische Methoden und Technologien an für den Nachweis von Stoffen und eine sichere und effiziente Labordiagnostik.
- Smart Materials: Wir kreieren nanostrukturierte und funktionelle Materialien mit spezifischen Eigenschaften, die in verschiedenen Bereichen der Life Sciences zur Anwendung kommen.

Perspektiven: Master und Weiterbildung

Masterstudium

Nach erfolgreichem Abschluss Ihres Bachelors können Sie an der ZHAW in Wädenswil einen forschungsbasierten und praxisorientierten Master of Science in Life Sciences absolvieren. Als Vertiefungsrichtung wird «Pharmaceutical Biotechnology» angeboten.

Der Masterabschluss qualifiziert Sie insbesondere bei internationalen Unternehmen für die höhere Karrierelaufbahn. Machen Sie den nächsten Schritt in Ihrer akademischen Karriere und melden Sie sich für das Masterstudium an.

Weiterbildung

Das Institut bietet auf Anfrage kundenspezifisch ausgerichtete Weiterbildungskurse in den Laboren der einzelnen Forschungsgruppen an.

Selbstverständlich können Sie auch praxisbezogene Weiterbildungskurse oder Weiterbildungsstudiengänge (MAS, DAS, CAS) an einer Fachhochschule oder Universität besuchen. Auch die Teilnahme an Fachtagungen, z.B. am Institut für Chemie und Biotechnologie, bietet Ihnen neues Wissen und fachliche Vernetzung.

Tagungen

Nutzen Sie die Gelegenheit, sich auf den neuesten Stand von Wissen und Technik zu bringen und die eigene fachliche Kontaktpflege voranzutreiben.

Internationale Arbeitserfahrung

Bezahlte Praktika in über 80 Ländern

Arbeitsalltag im «Feld»: Unterwegs bei einer Probenahme

«Ich würde jedem ein Auslandspraktikum empfehlen, da man unvergessliche Erlebnisse sammelt und dabei viel Spass hat.

IAESTE hat mir die Möglichkeit geboten unser Nachbarland, Österreich mit interaktiven und gut organisierten Events kennen zu lernen, erste Berufserfahrungen in einem neuen Arbeitsumfeld zu sammeln sowie internationale und anhaltende Freundschaften zu schliessen. Des Weiteren konnte ich erfolgreich mein berufliches Netzwerk ausbauen, welches eine Laufbahn nur positiv beeinflussen kann!»

Kevin Lustenberger, Biotechnologiestudent an der ZHAW Wädenswil. Er absolvierte im Sommer 2019 ein zweimonatiges Praktikum bei der Linz AG, in Linz, Österreich.

IAESTE Praktika...

- ... richten sich v.a. an Studierende technischer und naturwissenschaftlicher Fächer
- ... sind bezahlt: der Lohn deckt die Lebenshaltungskosten vor Ort
- ... bieten Dir **viele Vorteile:** Betreuung während der Bewerbungsphase, soziales Netzwerk vor Ort, etc.
- ... haben eine Dauer zwischen 6 Wochen und 12 Monaten

Alle unsere Praktikumsstellen findest Du hier: www.iaeste.ch/Students/TraineeshipOffers/

Premium Partner von IAESTE Switzerland

HASLER STIFTUNG

Internationaler Austausch

Sie möchten einen Teil Ihres Studiums im Ausland absolvieren? Die ZHAW bietet Ihnen diese Möglichkeit.

Ein Austauschsemester, ein Auslandspraktikum, der Besuch einer Summer School, eine Studienreise oder ein Sprachaufenthalt bringen Ihnen viele Vorteile: Sie lernen eine andere Kultur und Sprache sowie ein anderes Bildungs- und Forschungssystem kennen und Sie sammeln Erfahrungen für Ihre berufliche Zukunft. Das Departement Life Sciences und Facility Management der ZHAW ist im Rahmen des Swiss-European Mobility Programme SEMP (der Übergangslösung, welche vom Bundesrat für das EU-Bildungsprogramm Erasmus+ eingerichtet wurde) derzeit mit über 70 Partnerhochschulen in 15 europäischen Ländern vernetzt.

Der Studiengang Biotechnologie motiviert die Studierenden darin, ihre Bachelorarbeit an einem ihrer ausländischen Partnerinstitute zu schreiben. Zudem werden jährlich internationale Summer Schools organisiert. Neben den Informationen im Internet gibt die Studienberatung des Studiengangs Biotechnologie oder das International Relations Office (IRO) gerne dazu nähere Auskünfte und unterstützt Sie bei Ihren Fragen.

ALUMNI ZHAW

Damit Sie sich auch nach Ihrem Studium vernetzen können, steht Ihnen der Verein ALUMNI ZHAW mit den Fachbereichen «Life Sciences» und «Facility Management» zur Verfügung. Diese organisieren Events zu unterschiedlichen Anlässen, fachspezifische Vorträge und Besichtigungen und pflegen den Kontakt zu den Berufsverbänden und weiteren Alumni-Organisationen.

Geschäftsstelle ALUMNI ZHAW
ALUMNI ZHAW
Gertrudstrasse 15
8400 Winterthur
052 203 47 00
services@alumni-zhaw.ch

ZHAW LSFM

Die ZHAW ist eine der führenden Schweizer Hochschulen für Angewandte Wissenschaften. Sie ist in Lehre, Forschung, Weiterbildung und Dienstleistung tätig – praxisnah und wissenschaftlich fundiert. Mit ihren Standorten in Winterthur, Zürich und Wädenswil ist sie regional verankert und kooperiert mit internationalen Partnern. Die Hochschule umfasst acht Departemente. Derzeit sind über 14 000 Studierende an der ZHAW eingeschrieben.

Das Departement

Studieren und Forschen in Wädenswil: praxisnah, kreativ, leidenschaftlich und reflektiert. Dafür steht das Departement Life Sciences und Facility Management ein. Derzeit sind nahezu 1800 Studierende immatrikuliert und über 600 Personen in Wädenswil beschäftigt. Mit den Kompetenzen in Life Sciences und Facility Management leistet das Departement in den Gebieten Environment, Food und Health einen wichtigen Beitrag zur Lösung gesellschaftlicher Herausforderungen und zur Erhöhung der Lebensqualität.

Bachelor, Master und Weiterbildung

Das Aus- und Weiterbildungsprogramm umfasst sieben Bachelor- und vier Masterstudiengänge sowie ein breites Weiterbildungsangebot. Das Bachelorstudium führt zur Berufsbefähigung und vermittelt praxisorientiertes Fachwissen, Allgemeinbildung sowie Arbeitsmethodik. Das konsekutive Masterstudium führt zur Spezialisierung in der angestammten Studienrichtung und zum Erwerb von Zusatzqualifikationen. Permanente

Weiterbildung ist heute eine wichtige Voraussetzung für den beruflichen Erfolg. An der ZHAW gibt es massgeschneiderte Kurse, Tagungen und Weiterbildungsstudiengänge.

Forschung und Entwicklung

Forschungsstarke Institute leisten einen wichtigen Beitrag in Form von Forschung, Entwicklung und Dienstleistung. Sie arbeiten mit Wirtschaft, Behörden, Verbänden und anderen Forschungsinstituten eng zusammen. Die Kooperation mit externen Auftraggebern sichert den Wissens- und Technologietransfer zwischen Hochschule und Praxis.

Weitere Infos zu ZHAW LSFM: www.zhaw.ch/lsfm

ZHAW Zürcher Hochschule für Angewandte Wissenschaften

Life Sciences und Facility Management ICBT Institut für Chemie und Biotechnologie

Studiengang Biotechnologie Grüentalstrasse 14 Postfach 8820 Wädenswil Tel. +41 58 934 50 00 info.icbt@zhaw.ch www.zhaw.ch/icbt

Für weitere Informationen besuchen Sie unsere Webseite: www.zhaw.ch

