

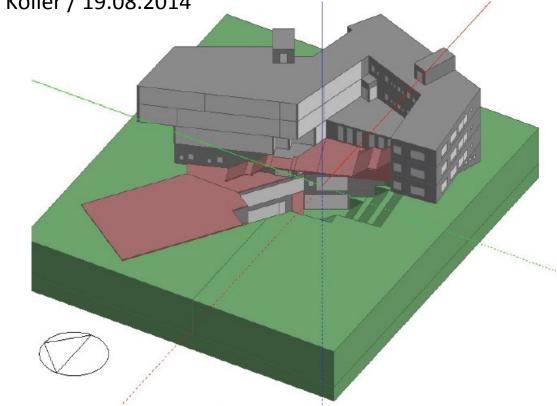
Zurich University of Applied Sciences Department N, Grüntalstrasse 14, CH-8820 Wädenswil, Switzerland / Talmon-Gros Max Jacques & Christoph Koller / 19.08.2014 ZEBISTIS Tools and Technologies for Energy CaseStudy St. Paul's green school [Part 2] **METHODOLOGY**

Model A

1. Only hot domestic water (HDW) covered by a solar thermic system with support of a heat pump and heat recovering (1/3 of used energy can be recovered).

A photovoltaic system provides the electricity demand of the heat pump. 2. Heating with a heat pump supported with- and without a geothermal energy sources.

Model B


Heating and HDW combined in one storage tank with the support of a water-to-water heat pump and a solar-and geothermal energy source. This simulation should show differences between model A to improve the best performing system. The target of this simulation was to find the best relation between hot water storage tank size, collector area and a maximum of solar cover ratio with a minimum of electrical energy-consumption caused by the heat pumps.

zedistis

Figure 1: Overview on the simulation process for model A and B; HP – heat pump; BHE – borehole heat exchangers

ZERO EMISSION BUILDING Integrating Sustainable Technologies and Infrastructure Systems

RESULTS

The simulations showed the most efficient system is directed south with a 278,4 m2 collector-area installed in the facade and the values listed below.

Best performance of Model A1 Water/water System two stage Heat Pump							
				Brine/water System two stage Heat Pump			
							Heat pump type: two stage modulated
Manufacturer CTA AG; Type: OH 55				Manufa	Manufacturer CTA AG; Type: OH 42e		
Power: 55,2kW at W10°C/W35°C				Power: 41kW at B0°C/W35°C			
COP 5,6				COP 4,5			
special building layout			basic building layout	special building layout			
Storage tank	1000L	4000L	4000L	1000L	2000L	4000L	
2x2 borehole heat exchang- ers (BHE) [kWh]	11′144	10'910	6'268,15	11'416	11'411	11′180	
Storage tank			8000L				
2x8 BHE [kWh]		9'693				9'932	
2x10 BHE [kWh]		9'389				9'619	

Potential for saving energy up to 60% compared to the system without geothermal energy solution

CONCLUSIONS

• Building structures according to the Passive House standard (D) or the Minergie label (CH) are a useful basis for designing ZEB's. To fulfill the criteria of these labels is still ambitious. There must be a special focus on renewable building materials with little "grey-energy".

• The climate in Korea causes peaks for energy not only in wintertime but also during summertime because of air conditioning.

• Heating systems with modulating heat pumps connected in series are the most efficient solution for heat pump systems. Source temperatures are geothermal source and a solar collector field

