

Zurich University of Applied Sciences Department N, Grüntalstrasse 14, CH-8820 Wädenswil, Switzerland / Talmon-Gros Max Jacques & Christoph Koller / 19.08.2014

ZEBISTIS Tools and Technologies for Energy

CaseStudy St. Paul's green school [Part 1]

Introduction

The ZEBISTIS project was associated with the process of design of a "green school" in South Korea. This pilot study gives an overview of possibilities in order to cover the energy demand of a green school in Korea

BUILDING FRAME CONDITIONS

THE BUILDING STRUCTURE IS BASED ON THE PASSIVE HOUSE STANDARD WITH FOLLOWING KEY DIMENSIONS				
		Heating E demand (Climate dependent factor)	Below 15kWh/m ² .year	
	alue	Primary energy demand	Below 120kWh/m ² .year	
		Opaque envelope	Below 0.15W/m2.K	
U-valu		Exterior wall	0.08-0.15W/m2.K	
		Roof	0.06-0.15W/m2.K	
		Window below	0.80W/m2.K (g-value: over 50%)	
		Basement Floor / Basement Ceiling	Below 0.15W/m ² .K	
		- requires mechanical air ventilation: heat recovery up to 90%		

Size of the conditioned area	4599 m ² (unconditioned 3364 m ²)		
Occupants	690		
School class days	195		
Operation time for the heating system [days]	85		
Hot water demand	30 I/day and person		
ENERGY DEMAND (FIRST DRAFT OF THE SCHOOL)			
Heat demand (with frame values - Passive House Standard)	68`986 kWh/a		
Heat demand for hot water	644 kWh/d (30 l/pers. and day)		
Electrical consumption lights and facility equipment	6`7425 kWh/a		

All calculations were done with the Polysun 6.0, T*SOL 5.5. and PVSOL 6.0.

TECHNOLOGY FOR SOLAR ENERGY

PHOTOVOLTAIC

Mono-crystalline modules (LG295N1C-G3 from LG Electrics Inc. Korea) are high end performing photovoltaic panels to be used on the roof to reach optimal performance without risk of shading.

- 295 Wp (STC) with a effectiveness of approximately 18%
- panels facing direction south with an angle of 30° (optimal orientation for Korea)

SOLAR THERMAL COLLECTORS

are usually used to preheat, with typical cover ratios of 60% for hot domestic water (HDW) or 30% for heating systems (yearly energy usage). Vacuum tube- or flat collectors are suggested to reach high cover ratios up to 90%. Vacuum-tube collectors to be installed in the façade (orientation: W, E and S)

HEAT PUMP SYSTEMS

- Air to Air/water heat pumps (ASHP):
- Easy to install and cheap but with low efficiency at cold source temperatures (air in for example at winter days).
- Brine-/water to water heat pumps in connection with an earth collector (shallow geo-thermal energy approx. 5 m under the ground):
- Low operation and maintenance costs and high efficiency but relatively high investment and installation costs. Efficiency depends on the quality of the ground.
- Brine/Water heat pumps (with a earth probe):

System with one of the highest efficiency and small operation and maintenance costs. Usable also for large scale buildings with a field of geo-thermal probes. These systems need precise calculations for the drilling costs of the boreholes, which is difficult

