
It is not just the flavour components of

chocolate that largely influence the quality 

of chocolate – fat, protein, sugar and water also

contribute to the desired mouth-feel, melting

behaviour and flavour release. The quality of

chocolate is significantly influenced by the

content of the four constituents, namely fat,

protein, sugar and water. It is, therefore, of great

importance to develop and refine precise and

reliable analytical methods to determine their

amount in chocolate. The concentrations of

these components are currently largely

determined through costly analysis by external

laboratories, which also delays the production

process. This was the motivation to search for

other methods which are reliable and fast

because they can be performed in-house. 

The recommended methods to determine the

content of fat, protein, sugar and water have

been described1. Each of the four constituents is

determined by time-consuming recommended

analytical procedure. The triglycerides content is

determined by soxhlet extraction and requires

several hours. Protein content is analysed using

the Kjeldahl method, while water content is

determined by Karl-Fischer titration or by oven

drying over several hours. The concentration of

sucrose is investigated by means of an

enzymatic reaction. These recommended and

rather complicated methods are performed by
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specialised analytical laboratories, guaranteeing

a standard evaluation. They are rarely useful 

to monitor the production process since

samples would have to be collected during the

production and sent to the laboratory for a

detailed analysis. In addition, most chocolate

manufacturers do not have the necessary

personnel and infrastructure to carry out

internal analysis. Therefore, companies are

forced to outsource. A very early special

motivation was the idea to replace difficult 

and demanding sensory analysis by simple and

reliable measurements2. 

A spectroscopic alternative
Due to the limitations of the classical wet

chemical analysis just described, it is desirable to

develop quick, less expensive, reliable methods.

Obvious alternatives to the classical methods are

those involving spectroscopy. Near-infrared

(NIR) spectroscopy is used widely in the food

industry and increasingly for cocoa analysis3-6.

NIR spectroscopy uses the electromagnetic

radiation in the near-infrared spectral range to

induce vibrational absorptions in molecules. The

energy of the NIR light ranges from 4000 cm-1 to

approximately 12500 cm-1 for the quantity

wavenumber (symbol v~) corresponding to 

the quantity wavelength (symbol λ) between

2500 nanometres and 800 nanometres.

When a sample is irradiated with electro -

magnetic radiation, the molecules can absorb

photons and subsequently undergo a transition

from a vibrational state of lower energy to a

vibrational state of higher energy. In the NIR

range, mainly transitions in overtones and

combination bands are observed.

Hence, if a sample is irradiated with infrared

light of intensity I0, a part of the light will be

absorbed and the emergent radiation I will 

be weaker. The absorbance A as the logarithm of

the ratio of incident over transmitted intensity, 

A = In(I0/I), of a substance is described by the

Lambert-Beer Law (Equation 1) and is linearly

related to the concentration c of the substance

in the sample:

(Eq. 1)

A is the absorbance, ε is the molar extinction

coefficient (unit: L mol-1 cm-1), l is the path length

(unit: centimetre), and c is the concentration 

of the substance (unit: mol L-1)7. This linear

relationship between absorbance and concen -

tration is ideal for quantitative analysis, this

holds with slight modifications also for

transmission or reflectance measurements7.

Since NIR spectra are usually characterised by

broad, more or less unstructured and over -

lapping bands, their quantitative analysis

requires some knowledge of NIR spectro-

scopic interpretation and relies strongly on

chemometrical evaluation methods.

Chemometrics
According to IUPAC (International Union of 

Pure and Applied Chemistry, www.iupac.org)

Chemometrics is ‘the application of statistics to

the analysis of chemical data (from organic,

analytical or medicinal chemistry) and design of

chemical experiments and simulations’8. 

The term chemometrics was coined by Svante

Wold in 1974 and since then has developed “to

an integral part of all areas of chemistry”9.

Chemometrics is applied with great success in

pattern recognition and classification, structure-

activity modelling, design of experiment,

multivariate process modelling and monitor -

ing10-13. An important chemical application of

chemometrics is to determine the amount 

of constituents within a sample, for example, 
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FIGURE 1 PCA model for seven different samples measured at two different wavenumbers (v~1, v~2). The
seven different NIR spectra are shown as seven points in the (A1, A2)-plane. PC1 and PC2 represent new
orthogonal, rotated axes along the directions with the largest (PC1) and the second largest (PC2) variances

FIGURE 2 The NIR spectra (without pre-treatment) plotted as absorption A against wavenumber v~
(in cm-1) here given as energy E divided by the product of Planck’s constant h and the velocity of light c, see
also7. The upper lines (3 spectra) belong to milk chocolate whereas the lower lines belong to dark chocolate
(8 spectra)

“ Besides oil and coffee, 
cocoa is one of the most valuable

commodities of global trade ”
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the content of fat, protein, sugar and water in

chocolate3-6. In the NIR spectrum, each con -

stituent has a certain wavenumber range which

shows characteristic absorption features that

can in turn be used to determine its concen -

tration in the sample after suitable calibration

procedures. Unfortunately, the NIR spectrum

often shows overlapping bands which renders

the analysis more difficult. It is therefore

advisable to make use of chemometric methods

where multivariate calibration (using many

probes at many wavelengths or wavenumbers)

is possible. Multivariate calibration has become

necessary and helpful in analytical chemistry for

the evaluation of spectrometric data as it offers

tremendous advantages over the classical 

one-wavelength approach (many probes at one

wavelength or wavenumber). Although comm -

ercial software packages exist to perform

chemometrical analysis, a basic knowledge of

mathematics, matrix methods and statistics is

mandatory to understand chemometrical

methods and avoid fallacies. In the case of

chocolate, a huge amount of data is collected:

fat, protein, water sugar and various concen -

trations of the constituents depending on the

probes including NIR spectra collected over a

broad wavenumber range with specified

spectral resolution. Multivariate methods are

well suited to bring order into the enormous

amount of data collected and to help interpret

the data graphically. When concentrations need

to be determined, calibration data is collected

and regression methods are used to determine

concentrations of probes with unknown

content. The concentrations are determined

indirectly by measuring the NIR absorption,

which is expected to follow Lambert-Beer’s law.

Among the most popular multivariate

method is the so-called Principal Component

Analysis (PCA) for data reduction and classifica -

tion. When regression comes into play, the

Principal Component Regression (PCR) and 

the Partial Least Squares Regression (PLS) are

applied within the multivariate method. While

PCR can be considered as an expansion of PCA

as it regresses Y-data (e.g. concentrations) on 

X-data (e.g. absorbance) that have previously

been transformed with PCA, PLS can be seen as

a further development of PCR, in that not only

the X-data but also the Y-data undergo a sort of

PCA-transformation. 

Brief introduction to PCR 
In the framework of PCA, an NIR spectrum can

be considered as a single point in a multi-

dimensional coordinate system, where a

coordinate corresponds to a specific absorbance

at a particular wavenumber. For example, if one

measures seven different samples of chocolate

at two different wavenumbers, v~ and v~2, the 

14 different NIR absorptions are represented 

as seven points in a two-dimensional coordinate

system spanned by the two absorbances, A1 and

A2, respectively (see Figure 1 (page 22) for an

artificial set). The PCA now rotates the co -

ordinate system so that the maximum possible

variance of the points lies along the first axes

(principal component 1, PC1), whereas the

second principal component (PC2) describes 
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Water Fat Protein Sugar
Sample (in %)a) (in %)a) (in %)a) (in %)a) Type
1 1.31 37.30 9.90 30.79 dark
2 0.71 37.35 10.43 28.57 dark
3 0.65 35.98 7.44 39.49 milk
4 0.80 40.36 7.79 33.96 dark
5 1.31 37.30 9.90 30.79 dark
6 1.12 46.52 8.44 26.27 dark
7 0.65 42.61 9.55 26.16 dark
8 0.71 38.54 8.24 36.67 milk
9 0.47 36.88 7.46 36.04 milk
10 0.71 37.35 10.43 28.57 dark
11 0.92 31.77 8.92 38.88 dark
a) Percentage relative to weight (w/w)

TABLE 1 The analytical results obtained for water, fat, protein, and sugar (given as a percentage) by 
conventional chemical standardised methods, as for example described in1. The first column 
numbers the various samples provided by Max Felchlin AG

Calibration Number Wavenumber Range Pretreatment of Spectra Probes
1 3800 to 12500 cm-1 none all
2 3800 to 12500 cm-1 EMSC all
3 3800 to 8850 cm-1 EMSC all
4 3800 to 12500 cm-1 none dark

TABLE 2 Calibrations used showing the wavenumber ranges (see also Figure 2 which displays the
absorption spectra), pretreatment of spectra and the kind of probes used. EMSC means Extended
Multiplicative Scatter Correction

FIGURE 3 Score values for the untreated spectra on PC1 and PC2. Milk and dark chocolate are 
clearly separated

“ The triglycerides content is
determined by soxhlet extraction

and requires several hours ”
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the variance not already described by PC1; PC2 is

orthogonal to PC1. From a mathematical point

of view, PCA is the solution of an eigenvector

problem. Various algorithms (the most common

are Singular Value Decomposition SVD and 

the NIPALS algorithm) can be used to find the

eigenvectors and the correspondent eigen -

values of a matrix. The eigenvector with the

highest eigenvalue will be PC1, the eigenvector

with the second highest eigenvalue will become

PC2, and so on. 

PCA decomposes the original matrix X

(absorbances) in a Matrix P called loadings-matrix

and a matrix T, called scores-matrix. The loadings-

matrix P is a transformation matrix which rotates

the reference system, while the scores-matrix T

contains the projections of the original data 

onto the new reference system. PCA, therefore,

allows the drastic reduction of the dimen -

sionality of the system without significant loss of

information since usually few PCs are needed to

describe most of the variance in the data, so that

the less important PCs can be neglected while

building a model. The PCA system can be

described by Equation 2 and is further

graphically illustrated in Figure 1 (page 22) 

(Eq. 2)

The PCA as defined by Equation 2 contains 

only spectroscopic data, here represented by

the absorbance matrix X. However, if we want to

perform quantitative analysis to determine

unknown concentrations by spectroscopic

methods, we need to establish a correlation

between the measured spectra and the con -

centrations, here represented by the vector y

(components yi). This can be achieved through a

regression calculation, Equation 3 (page 26),

which allows us to establish a correlation

between the y (concentration) and the original
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FIGURE 4 Score values related to fat content for the EMSC pre-treated spectra on PC2 and PC3. Numbers
and colours identify samples according to their fat content (1: 31.8, 2: 36.0 to 36.9, 3: 37.3 to 37.4, 4: 38.5 to
40.4, 5: 42.6, 6: 46.5 per cent)
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X-variables (spectra), where b contains the

regression coefficients. 

(Eq. 3)

If, however, instead of considering the original

data X, we can use the data obtained from the

PCA to obtain Equation 4, which is analogeous

to Equation 3 but uses the scores of the PCA

(matrix T). Equation 4 becomes the equation for

the PCR that regresses the y data on the PCs 

of the PCA, thereby providing different

regression coefficients q. 

(Eq. 4)

In order to be able to use Equation 4 to perform

quantitative analysis, we have to determine the

regression coefficients q. This can be achieved

through a calibration where both y data and X

data have to be known; each row of the matrix Y

contains the calibration concentrations of each

calibration sample, through which we obtain

Equation 5.

(Eq. 5)

It is now to use the coefficients q and 

the loadings P that were determined in the

calibration in order to predict the concentration

y of an unknown sample from its absorption

spectrum using Equation 6.

(Eq. 6)

Both PCA and PCR transform the X data and

work with the original concentration data y. PLS

goes one step further and also transforms the y

data, performing a PCA on them. PCR and PLS

have similar predicting powers and the accuracy

and precision of these two methods are closely

related although PLS usually requires fewer

coordinates than PCR. More detailed discussion

of the mathematical background of PCA, PCR

and PLS can be found in the literature11-13.

Although there is a variety of chemometrics

software commercially available offering 

various data pre-treatments and multivariate

methods, they are not a prerequisite to 

perform multivariate calibration; basic PCA 

and PCR methods can easily be programmed

using mathematical software such as Matlab 

or GNU Octave.

Experimental 
The chocolate samples, dark chocolate 

(8 samples) and milk chocolate (3 samples), as

well as the reference values of the fat, protein,

sugar and water content were provided by 

Max Felchlin AG. The reference values 

were determined by an external laboratory

specialised in quantitative analysis using

standardised methods1. Table 1 (page 24) shows

all the samples and their corresponding

reference values. For each sample, three

independent measurements were performed

and each measurement was treated as an

independent sample. Two measurements were

used to calibrate the PLS model, while the 

third was used to create a validation set. 

The calibration set, therefore, contained 

22 samples, while the validation set was formed
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FIGURE 5 Score values related to water content for the EMSC pre-treated spectra on PC1 and PC2.
Numbers and colours identify samples according to their water content (1: 0.47, 2: 0.65, 3: 0.71, 4: 0.8 to
0.92, 5: 1.12, 6: 1.31 per cent)

Mean Value Lowest Relative
(Reference)a) RMSEP RMSEP Offset Calibration

Analyte (in %)c) (in %)c) (in %) Slope (in %)c) R 2 Numberb)

Water 0.85 0.041 4.7 0.988 0.462 0.998 4
Fat 38.36 0.220 0.57 1.029 0.005 0.992 3
Protein 8.95 0.139 1.55 0.937 0.557 0.989 4
Sugar 32.38 0.275 0.85 0.993 0.371 0.998 4
a) From Table 1 by averaging over all samples
b) See Table 2
c) Percentage relative to weight (w/w)

TABLE 3 Analyte, RMSEP (root mean square error of prediction), relative RMSEP (with respect to the mean
value), slope, offset, correlation coefficient squared, and calibration number used (ideal fit: slope 1.0 and
offset equal to 0.0, R2 = 1.0)

This work [3] [4] [5]
Analyte chocolate mass chocolate mass cocoa powder finished chocolate
Water 4.7 % 20 % 0.4 % –
Fat 0.6 % 2.6 % 1.2 % 3.3 %
Protein 1.6 % – 0.09 % –
Sugar 0.9 % 2.6 % (sucrose) – (3.3 %)b)

4.5 % (lactose)
a) Percentage relative to weight (w/w)
b) Reported as carbohydrates

TABLE 4 Analytes and relative RMSEPa) (root mean square error of prediction with respect to the mean
value) for various chocolate products, as reported in the literature (see text for details)

“ Individual PLS regression 
models were computed for each

constituent of chocolate with four
different calibrations ”
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from 11 samples. The NIR spectra were

measured at 50°C using a Bruker MPA-NIR-

spectrometer. The multivariate models were

computed using The Unscrambler X14. 

Results
Typical measured spectra are represented in

Figure 2 (page 22). It is clearly visible that

spectra of dark chocolate and milk chocolate

tend to form separate groups of spectra, which

can be easily held apart. This is even more

obvious when we look at the score plot of the

PCA in Figure 3 (page 24), where a clear

separation between dark and milk chocolate

clusters can be seen. In order to compensate

different scattering by dark and milk chocolate,

the spectra were treated with Extended

Multiplicative Scatter Correction (EMSC). EMSC is

a method developed to correct multiplicative

and additive effects caused by different light

scattering in the spectroscopic measurement. In

our case, EMSC is used to correct scattering

differences for dark and milk chocolate.

Figure 4 (page 25) shows the score values of

the EMSC pre-treated spectra on PC2 and on

PC3. In order to highlight the correlation

between content of fat and score values of the

PCA, the samples were grouped according to

their fat content. The score plot clearly shows a

pattern and a correlation between fat content

and score values. Samples having the lowest fat

content show negative score values on PC2 and

rather high scores on PC3 (for example No. 1). 

In contrast, the higher the fat content, the more

positive the scores on PC2 and the lower the

scores on PC3 (for example No. 6). Similar

patterns were found in the score plot PC1

against PC2 for sugar content and less

pronounced for protein content (not shown

here). However, neither the score plots PC1

against PC2 represented in Figure 5 (page 26)

nor PC3 against PC4 show a correlation between

score values and water content of the sample.

Individual PLS regression models were

computed for each constituent of chocolate

with four different calibrations. For the first

calibration, the untreated, original spectra were

used. The second calibration was modelled

using the EMSC pre-treated spectra. The

inspection of the X-loadings of the second

NEAR INFRARED

FIGURE 6 Loadings versus wavenumber for PC1 (obtained with PCA including pre-treatment EMSC, see
Table 2) suggest that the spectral range above 8850 cm-1 does not contain significant information for the
quantification of the four constituents
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calibration suggested that the spectral range

between 8850 and 12500 cm-1 does not contain

information relevant to the quantification of fat,

protein, sugar and water (see Figure 6, page 27).

Thus, a third calibration was created using 

the range between 3,500 and 8,850cm-1 of the

EMSC-treated spectra. Due to the obvious

discrepancy between the spectra of dark and

milk chocolate, a fourth calibration was

generated considering only samples of 

dark chocolate. A calibration only with milk

chocolate was not prepared because of a lack of

a sufficient number of samples. The parameters

relevant for the four calibrations are summarised

in Table 2 (page 24).

The predictive power of each calibration

was then examined with a cross-validation by

predicting the contents of analyte of the

samples in the validation set. For each

constituent of chocolate it was possible to set up

multiple models that offered satisfactory

predicting power. Calibration No. 4 (only dark

chocolate, see Table 2, page 24) provided the

best predictions for protein, sugar and water.

The fat content was best predicted by

calibration No. 3 (cropped spectra, see Table 2,

page 24). The relative root mean square error of

the prediction (rel-RMSEP) for water, fat, protein,

and sugar lie between 0.6 and 4.7 per cent.

Considering the limited data set, the quality of

our model presented here is supported by the

slope, the offset and by the correlation

coefficient squared given in Table 3 (page 26)

which summarises all the values of the

prediction diagnostics for the best calibrations.

Table 4 (page 26) shows that our results confirm

or exceed the expected precision. It is to be

noted that the investigations listed here used

either chocolate mass, finished chocolate or

even cocoa powder and this might influence the

quality of the NIR spectroscopic determination

as well. The combination of NIR and IR in the

study of chocolate powder gives very low

relative RMSEP values4, which might be due to

the special matrix compared to chocolate mass

investigated at 40 to 50°C3,5,6. 

While calibration for fat, protein and 

sugar achieve very low relative RMPES (error 

of prediction), the relative precision of the

prediction of water content is higher which

implies that the water content is less well

determined. Firstly, this is because of the low

absolute value of the average water content.

Secondly, the abovementioned lack of

correlation between water content and scores is

already a hint that a fit might be difficult or

unreliable. The quality of prediction for water

could possibly be enhanced by improving the

analytical reference method or by a different

pre-treatment of the data. Frequently, one uses

as another possible pre-treatment the first or

second derivative of the NIR spectra3-5. In our

case, we could not find any significant improve -

ment with respect to the procedure described

above. In some cases, outlier detection is

important, especially in monitoring produc-

tion processes over a long period of time, 

because drift effects might influence the

analysis. Outlier detection helps to detect when

re-calibration is needed15.

Conclusion
This study demonstrated that it is possible to

determine the content of fat, protein, sugar 

and water in chocolate by means of NIR

spectroscopy combined with chemometric

methods. The results obtained are consistent

with the findings of similar previous investiga -

tions2-6 and confirm that NIR is a viable tool to

quickly determine the content of chocolate with

respect to the four constituents fat, protein,

sugar, and water. Although wet chemical

methods will always be used for external

independent calibration, NIR offers a suitable

and efficient replacement. Moreover, modern

NIR spectrometer are relatively easy to use and

the measurements can be carried out by

technical staff without extensive training, thus

making it an ideal tool for repeated measure -

ments during the production process. However,

an important prerequisite is a thorough

understanding of the first principles of chemo -

metrics as well as IR spectroscopy.
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