

Nachhaltige Trocknungsprozesse

Grundlagen der Trocknung

Das Trocknen von Lebensmitteln dient dazu, deren Haltbarkeit zu verlängern. Um Lebensmittel zu trocknen, wird das vorhandene Wasser erwärmt, zur Oberfläche transportiert, dort verdampft und über die Trocknungsluft entfernt:

Herausforderung und Potential

Einflussfaktor	Potential für Energiereduktion	Strategien für Energiereduktion		
Gehalt an freiem Wasser	Hoch	Vorbehandlung, Vorkonzentrierung		
Aufwärmphase	<mark>Hoch</mark>	Nicht thermische Energieübertragung		
Phasenübergang	Mittel	Vakuum		
Transport zur Oberfläche	Tief	Dünnere Schichtdicke Trocknungsgut, Porosität erhöhen		

Die traditionellen Trocknungsmethoden basieren auf thermischer Energie und weisen häufig eine **Energieeffizienz von weniger als 50%** auf. Dies führt zu einem sehr hohen Energieverbrauch und/oder Qualitätseinbussen. Zusätzliche Verarbeitungsschritte können dem entgegenwirken, indem sie die thermische Belastung der Lebensmittel verringern.

Nachhaltige Trocknungsmethoden

Unter nachhaltigen Trocknungsmethoden verstehen wir Prozesse, welche weniger Ressourcen verbrauchen oder eine zusätzliche Nutzung von Lebensmitteln erzielen. Die Trocknung ist teilweise, trotz hohem Energieverbrauch, die einzige Strategie, um Rohstoffe zu veredeln und für die menschliche Ernährung zugänglich zu machen.

Übersicht Technologien

	Geeignet für Flüssige LM	Geeignet für Feste LM	Ernährungs qualität	Energiespar potential	Foodwaste
Lufttrocknung	N	Υ	Gering	Hoch	Gering
Sprühtrocknung	Υ	N	Gut	Mittel	Mittel
Kontakttrocknung	Υ	N	Gering	Mittel	Mittel
Gefriertrocknung	N	Υ	Gut	Hoch	Gering
Vakuumtrocknung	Υ	Υ	Gut	Mittel	Mittel
Gefrieren	Υ	Υ	Gut	Gering	Gering
PEF	Υ	Υ	Gut	Mittel	Gering
Biochem. Aufschluss	Υ	N	Mittel	Hoch	Mittel
Ultraschall	Υ	(Y)	Mittel	Mittel	Gering
Nassvermahlen	Υ	Υ	Gut	Mittel	Mittel
Vakuumkonzentration	Υ	N	Gut	Mittel	Mittel
Membrantechnologie	Υ	N	Gut	Hoch	Mittel
Osmot. Dehydrierung	N	Υ	Gut	Hoch	Mittel
Umkehrosmose	Υ	N	Gut	Hoch	Mittel
Sedimenter	Υ	N	Gut	Hoch	Mittel
Zentrifugen	Υ	N	Gut	Hoch	Mittel
Pressen	(Y)	Υ	Gut	Hoch	Hoch
Infrarotstrahlung	Υ	Υ	Gut	Hoch	Gering
Mikrowelle	Υ	Υ	Mittel	Hoch	Gering
Ohmic Heating	Υ	N	Gut	Hoch	Gering

Übersicht Methoden

Vorbehandlung Erhöht den Gehalt an freiem Wasser: Auflösung der Zellwände, um intrazelluläläres Wasser zu befreien und Aufbrechen chemischer Verbindungen

lung

Ultraschall

Aufschluss

Vorkonzentration Reduziert den Wassergehalt: Entfernung von frei verfügbarem Wasser mithilfe von nicht thermischen Verfahren

Vakuum-

onzentration

Membrantechnologie

Osmotische Dehydrierung

Umkehrosmose

Sedimenter

Zentrifugen

Alternative Erhitzung Energieübertragung durch elektrische Methoden bei leitfähigen Lebensmitteln

Infrarot

Ohmic Heating

Mikrowelle

Praktische Empfehlungen

Produzierende Betriebe: Fokus auf Optimierung durch Vorbehandlung, Vorkonzentration und alternativen Erhitzungsverfahren; neue Technologien in Zusammenarbeit mit Forschung und Anlagenherstellern testen, Offenheit gegenüber Innovation

Einkauf von getrockneten Lebensmitteln: Produkte bevorzugen mit hoher Ernährungsqualität (Temperaturen < 80 °C, kurze Trocknungszeiten) Anbieter mit Nachhaltigkeitszielen priorisieren, Austausch fördern.

Verbesserte Qualität

Ziel: Qualität erhöhen bei möglichst langer Haltbarkeit (Ernährungsqualität, Sensorik, Struktur & Textur)

Zentrale Einflussfaktoren: Dauer der Hitzeeinwirkung, Trocknungstemperatur, Zusammensetzung Lebensmittel

Empfehlung: Hitzebelastung Produkt reduzieren, Vorkonzentration, Vorbehandlung und alternative Erhitzung prüfen (inklusiv Kombination dieser Methoden mit thermischer Trocknung)

Zusätzliche Wertschöpfung

Ziel: Geeignete Trocknungsprozesse designen für neue Rohmaterialien und Lebensmittel, welche nicht genutzt werden bisher

Zentrale Einflussfaktoren: Produkteigenschaften (Wassergehalt, wertgebende Inhaltsstoffe, für die Trocknung störende Inhaltsstoffe)

Empfehlung Produkt und gewünschte Eigenschaften bestimmen Vorkonzentration, Vorbehandlung und alternative Erhitzung prüfen (inklusiv Kombination dieser Methoden mit thermischer Trocknung), Thermische Trocknungsmethode den Produkteigenschaften angepasst auswählen

Weiterführende Informationen

Entscheidungshilfen und Überblickstabelle für Methoden der Vorbehandlung, Vorkonzentration, Alternativen Erhitzung und Auswahl von

thermischen Methoden.

White Paper und Literaturquellen auf der Cirvalis Webseite

