

How can we make energy social science more impactful?

Invited Keynote Address to the 5th European Conference on Behavior and Energy Efficiency (BEHAVE), Zurich, Switzerland, September 5th – 7th 2018

Benjamin K. Sovacool, Ph.D

Professor of Energy Policy
Director of the Sussex Energy Group
Director of the Center on Innovation and
Energy Demand

Overview and preview

- What is "energy social science?"
- How prevalent is (or was) it?
- How can we improve interdisciplinarity?
- How can we improve (academic and non-academic) impact?

What is social science (or energy social science)?

Arts & Humanities

Suggested Disciplines: American Studies; Archaeology; Architecture/Built Environment; Area Studies; Art & Design; Classics, Drama, Dance & Performing Arts; English Language & Literature; History; Languages & Linguistics; Music; Philosophy; Theology, Divinity & Religious Studies

Engineering & Technology

Suggested Disciplines: Chemical Engineering; Civil Engineering; Computer Science; Electrical & Electronic Engineering; General Engineering; Mechanical, Aeronautical & Manufacturing Engineering; Mineral & Mining Engineering; Nanotechnology

Life Sciences & Medicine

Suggested Disciplines: Agriculture; Biological Sciences; Clinical Psychology; Dentistry; Food Science & Technology; Health Sciences; Medicine and Medical-related Studies; Neuroscience; Nursing; Pharmacy & Pharmacology; Psychiatry; Public Health; Veterinary Science

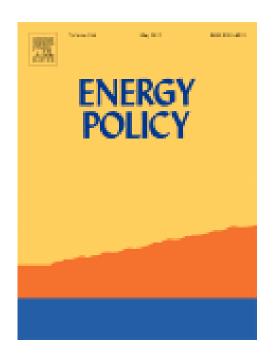
Natural Sciences

Suggested Disciplines: Applied Mathematics; Astronomy; Chemistry; Earth Sciences; Environmental Sciences; Geography; Metallurgy & Materials; Physics; Pure Mathematics

Social Sciences & Management

Suggested Disciplines: Accounting & Finance; Anthropology; Business & Management Studies; Communication, Cultural & Media Studies; Development Studies; Economics & Econometrics; Education; Law; Library & Information Management; Politics & International Studies; Sociology; Social Policy & Administration; Social Psychology; Social Work; Sports-related Subjects; Statistics & Operational Research; Town & Country Planning

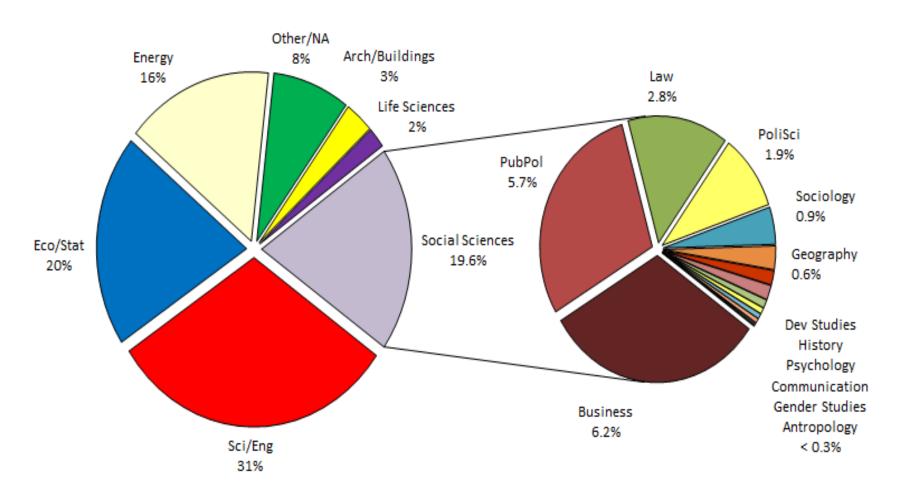
A broad take on energy social science


- However, energy "social science" is more than a collection of disciplines
 - A social or epistemic community of scholars, an identity
 - A method or way of doing (often qualitative) research
 - A collection of concepts or theories
 - The domain or interest of particular topics
 - A family of journals

How much is energy social science used? (Answer, from a slightly older study: not much)

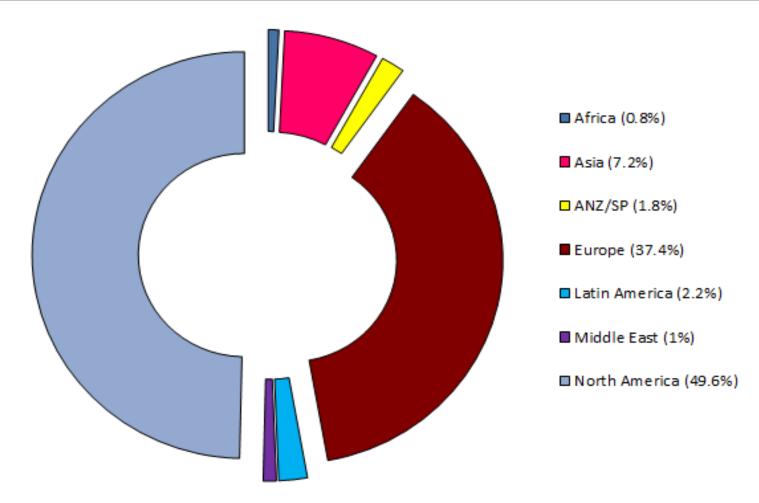
Sample of articles in our content analysis

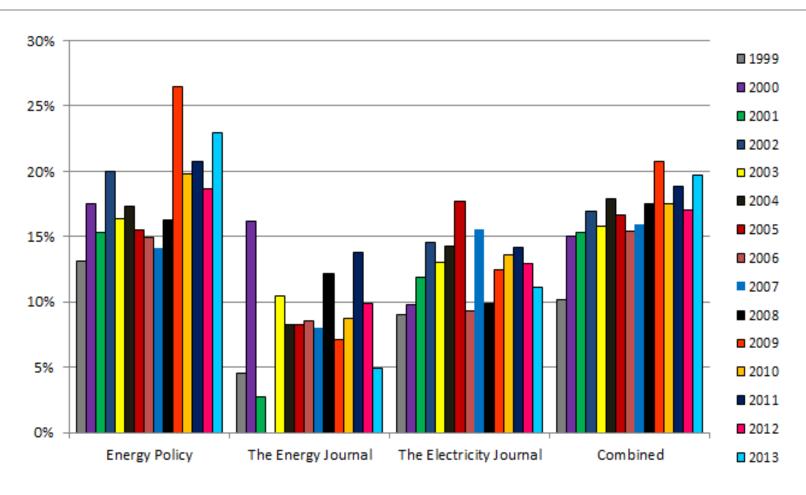
Sample of articles in our content analysis

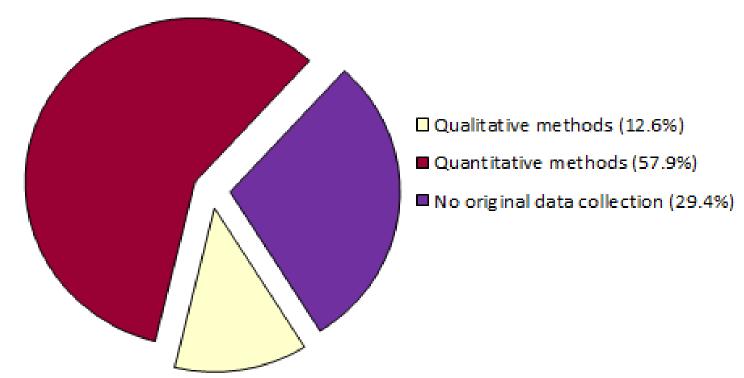

General statistics for energy studies journal articles, 1999-2013.

Year	Number of total articles	Number of authors	Number of disciplinary affiliations	Number of institutional affiliations	Number of disclosed funding sources	Number of methodological approaches	Number of country case studies	Number of discussed technologies	Number of discussed topics	Number of references ^a
1999	187	368	346	355	196	206	206	296	425	1780
2000	183	332	281	277	190	213	170	253	325	2451
2001	199	420	500	413	224	225	239	415	635	2940
2002	202	361	374	311	220	211	207	266	519	2879
2003	219	425	448	389	235	231	252	350	594	3288
2004	238	508	597	483	295	262	293	473	822	4778
2005	276	609	653	548	296	299	290	439	610	5539
2006	474	1102	932	1016	532	499	540	1080	1266	12,833
2007	287	670	626	504	332	320	329	809	773	5221
2008	237	523	470	470	147	275	241	772	698	5108
2009	314	684	707	680	334	383	322	938	903	6820
2010	384	822	799	810	414	469	401	1121	1250	8486
2011	392	850	852	842	398	445	410	1219	1298	8534
2012	383	844	883	809	420	414	390	1335	1258	8576
2013	469	1031	1129	974	505	560	525	1490	1432	10,846
Total	4444	9549	9597	8881	4738	5012	4815	11,256	12,808	90,079

^a Includes only Energy Policy for all years and the Energy Journal from 2003 to 2013.


Disciplinary Affiliation for Energy Studies Journal Articles, 1999 to 2013 (n=9,597)


Country Affiliation for Energy Studies Journal Authors, 1999 to 2013 (n=9,549)


Share of Female Authors for Energy Studies Journal Articles, 1999 to 2013 (n=9,549)

Methodological Approaches of Energy Studies Journal Articles, 1999 to 2013 (n=5,012)

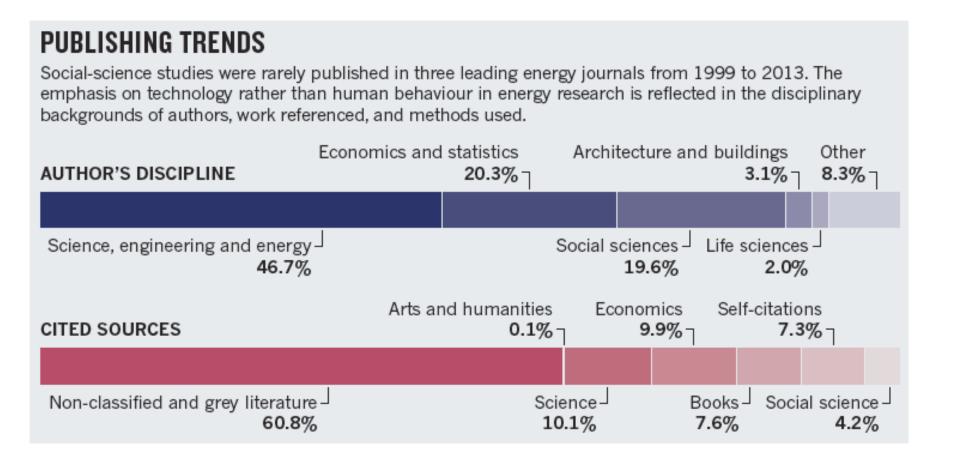
Qualitative methods" refer to original data collected through research interviews, surveys, questionnaires, or field research. "Quantitative methods" refer to original data collected through economic modeling, forecasting, econometric analysis, programming, statistical analysis, input/output analysis, cost benefit analysis, lifecycle assessments, remote sensing, and other similar tools.

Citations from Energy Studies Journal Articles, 1999 to 2013 (n=90,079)

	Non-Classified/Grey Literature	Self- Citations	Economi cs	Scien ce	Book s	Social Science	Arts & Humanities
1999	1018	75	217	141	274	55	0
2000	1540	170	187	178	320	54	2
2001	2054	203	241	127	255	60	0
2002	1959	158	196	208	295	63	0
2003	2287	229	250	213	223	85	1
2004	2950	304	474	472	434	144	0
2005	3552	400	515	483	377	212	0
2006	7439	964	1209	1608	884	714	15
2007	2847	430	659	677	328	279	1
2008	2823	352	616	663	273	379	2
2009	4137	466	747	656	519	292	3
2010	5363	594	812	748	611	354	4
2011	5179	686	798	951	554	355	11
2012	5046	682	869	945	649	372	13
2013	6588	826	1108	1054	849	402	19
Total	54782	6539	8898	9124	6845	3820	71
%	60.8	7.3	9.9	10.1	7.6	4.2	0.08

How do we promote interdisciplinarity?

(1) Use more human-centered methods


 Only 13 percent of articles reported using "human-centered" research methods

- These were dominated by surveys (7.8 percent)
- Far fewer studies utilized field research, research interviews, participant or field observation, or focus groups

(2) Seek inclusion and involvement of particular disciplines and sources (and countries)

Source: Sovacool, BK. "Energy Studies Need Social Science," *Nature* 511 (7511) (July 31, 2014), pp. 529-530.

(3) Explore under-represented topics or themes (which we have begun to do)

NEGLECTED TOPICS

Twelve subjects seldom considered in energy studies.

Торіс	Example
Gender and identity	Pollution from cooking stoves posing greater risk to women than men
Philosophy and ethics	Future generations bearing the burden of pollution
Communication and persuasion	Energy information changing individual or firm behaviour
Geography and scale	Mismatching the size of energy systems to patterns of demand
Social psychology and behaviour	Shaping energy choices by trust, control and denial
Anthropology and culture	Temporal and regional differences in conceptions of energy services
Research and innovation	How people, markets and institutions drive innovation
Politics and political economy	Resources contributing to conflict or stymying growth
Institutions and energy governance	Evolving rules and norms to address collective energy problems
Energy and development	Energy use contributing to economic growth and falling poverty
Externalities and pollution	Costs to society of erosions of environmental and ecological capital
Sociology of technology	Economic, political and social drivers of energy consumption

Source: Sovacool, BK. "Energy Studies Need Social Science," *Nature* 511 (7511) (July 31, 2014), pp. 529-530.

(4) Change incentive structures

- 1. If you like social science, fund it: <u>public and private organizations</u> should give a bigger slice of funding to social scientists (\$1-35 bias)
- 2. Collect social data: to reduce disciplinary bias, energy ministries, statistical agencies and public utility commissions should focus more on energy behaviour and demand, rather than just supply, and employ focus groups, interviews, surveys, etc. to create rich, complex narratives
- 3. Focus on problems, not disciplines: <u>University administrators</u> should make energy research more problem-oriented, including social perspectives, and tweak promotion guidelines to account for trans-disciplinary approaches
- 4. Include others: <u>researchers</u> should do more to accommodate expertise and data from laypersons, indigenous groups, community leaders and other nonconventional participants, and reach across disciplines, and beyond Europe and North America
- 5. Incentivize social science methods and concepts: **journal editors** can prioritize interdisciplinary, inclusive, comparative mixed-methods research in their aims and scope

Source: Sovacool, BK, SE Ryan, PC Stern, K Janda, G Rochlin, D Spreng, MJ Pasqualetti, H Wilhite, L Lutzenhiser, "Integrating Social Science in Energy Research," *Energy Research & Social Science* 6 (March, 2015), pp. 95-99

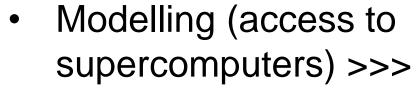
How do we enhance excellence and impact?

As an editor, my take is that:

- North American and European authors still dominate, the English language barrier is real
- 50% (or more) of submissions are easy desk rejects for not reading aims and scope
- Weak research designs, or none at all
- Single country case studies (90% plus?)
- Reliance on a single method (often primary data, which is good, but still ...)
- An emphasis on either theory, or policy relevance or application, but not both
- Missing all of the above: authorship inclusive of the Global South, with strong research design, comparative cases, triangulated with mixed methods, that contribute both to theory and practice, <1%

One idea is that you can explicitly design for impact and excellence:

- Interdisciplinary
- Mixed methods / triangulation
- Replicability / confirmability
- Comparative cases
- Address a practical problem/puzzle
- Advance or apply concepts and theories
- Well written
- Well cited (eventually)
- Top-performing on alt-metrics


What makes an excellent (or at least good) output?

Robust methods (and time intensity) sometimes

a rough proxy:

 Primary data (interviews, focus groups, surveys), especially hard to access places >>>

- New/innovative methods (shadowing, stalking, diaries)
- Meta-analysis (meta-surveys, systematic reviews)
- Content analysis

Energy Research & Social Science 26 (2017) 54-59

Contents lists available at ScienceDirect

Energy Research & Social Science

journal homepage: www.elsevier.com/locate/erss

Perspectives

The hidden economic benefits of large-scale renewable energy deployment: Integrating heat, electricity and vehicle systems

Center for Energy Technologies, Department of Business Development and Technology, Aarhus University, Denmark

Article history: Received 24 January 2017 Accepted 24 January 2017 Available online 3 February 2017

Keywords:

Renewable energy Electric vehicles Renewable integration

ABSTRACT

The transition to large-scale renewable energy in order to mitigate climate change is necessity. Much academic literature has begun to focus on the technical and economic plausibility of such a transition to renewable energy, but these studies often explore one to several potential energy systems and their costs and benefits as compared to the existing system. This paper summarizes the policy implications of a recent analysis that builds on the literature of the integration of renewable electricity, electric vehicles and electric heat. After each system was modeled for four years of operation to ensure reliability, the costs of energy systems were then calculated both with and without externalities to better understand how this cost affects implementation. We present the results and policy implications of our analysis across the 86 million energy systems and conclude with the role of social science in future research.

© 2017 Elsevier Ltd, All rights reserved

Another equally valid way: social usefulness

Socially useful

Thomas Edison quadrant: Purely applied research (e.g., analysis to support more effective advertising campaigns for household renewable electricity systems)

Louis Pasteur quadrant: Use-inspired basic research (e.g., studies of determinants of adoption of energy efficient technologies)

Does not improve fundamental understanding

Rubbish Bin quadrant: Research that makes no contribution to knowledge; advocacy drawing inappropriately or selectively on science (e.g., studies discrediting climate change science)

Niels Bohr quadrant: Pure basic research (e.g., history of energy use during the Renaissance) Improves fundamental understanding

Not socially useful

Source: Stern, PC, BK Sovacool, and T Dietz. "Towards a Science of Climate and Energy Choices," *Nature Climate Change* 6 (June, 2016), pp. 547-555

Yet another: hierarchies of validity or rigor

For experimental, behavioural, or psychological designs:

Source: Sovacool, BK, J Axsen, and S Sorrell. "Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design," *Energy Research & Social Science* (in press, 2018)

Stronger evidence

Systematic reviews/meta-analysis
Two or more double blind randomized experiments
One or more large randomized experiment
One or more well-conducted cohort studies
One or more well conducted case-control studies (pre/post)
An uncontrolled experiment/pilot
Expert committee sitting in review
Peer leader opinion
Personal experience

Weaker evidence

Hierarchies of validity or rigor

For data analysis / econometrics:

Source: Sovacool, BK, J Axsen, and S Sorrell. "Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design," *Energy Research & Social Science* (in press, 2018)

Greater rigor

Multivariate analysis (longitudinal)

Multivariate analysis (crosssectional)

Bivariate analysis

Univariate analysis

Lower rigor

Hierarchies of validity or rigor

For literature reviews:

Source: Sovacool, BK, J Axsen, and S Sorrell. "Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design," *Energy Research & Social Science* (in press, 2018)

Greater rigor

Meta-analysis

Systematic review (weighted by study rigor)

Systematic review (unweighted)

Narrative review (with search criteria, explicit parameters and a sample)

Narrative review (with convenience sample)

Lower rigor

Hierarchies of validity and rigor

For case studies:

Source: Sovacool, BK, J Axsen, and S Sorrell. "Promoting novelty, rigor, and style in energy social science: Towards codes of practice for appropriate methods and research design," *Energy Research & Social Science* (in press, 2018)

Stronger evidence

Literature review of a large number of case studies

Collection of more than two case studies, variation in type, time or space

Two comparative case studies, no variation

Single case study

Anecdotal experience

Weaker evidence

Hierarchies of validity and rigor

- There are others (modelling, surveys, qualitative methods)
- Often requires a balancing between them, no article excels in all, especially those with mixed designs
- We advocate more of a "codes of practice" or "horses for courses" mentality
- Don't choose higher forms if
 - Cannot execute (lack of time, funding, access)
 - Marginal value to moving up (confidence interval stays roughly the same)

A final valid type of contribution: theoretical

Original Article

SSS

Ordering theories: Typologies and conceptual frameworks for sociotechnical change

Social Studies of Science 1–48 © The Author(s) 2017 Reprints and permissions:

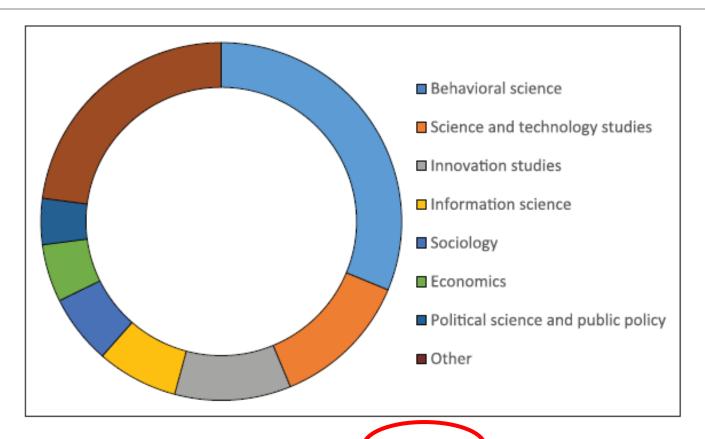
sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/0306312717709363 journals.sagepub.com/home/sss

Benjamin K Sovacool

Department of Business Development and Technology, Aarhus University, Herning, Denmark; Science Policy Research Unit, University of Sussex, Brighton, UK

David J Hess

Department of Sociology, Vanderbilt University, Nashville, TN, USA


"Ordering" theories?

- Internal components. The "pieces" of what makes an individual theory work, what separates it from others, what makes it unique
- A menu. A list of options for students, researchers, and other stakeholders.
- A way of classifying. Better grappling with ontologies and epistemologies, assumptions behind theories, ways of comparing them across each other, taxonomies and typologies.

Ordering theories: the long-list

Figure 2. Academic discipline for selected theories (n = 96). 'Other' disciplines include history, organization studies, political ecology and geography, transport studies, business studies, communication studies, conflict resolution, consumption studies, development studies, energy studies, ethics and moral studies, legal studies and jurisprudence, linguistics and semiotics, marketing, and mathematics.

Ordering theories: the long-list

No.	Discipline	Name	Key author(s)	Application to sociotechnical diffusion and acceptance
1	Behavioral science	Attitude-Behavior- Context (ABC) Theory	Paul C. Stern, Stuart Oskamp	A kind of field theory for behavior intended to be environmentally sustainable, inclusive of accepting environmentally friendly technologies. Behavior (B) is an interactive product of 'internal' attitudinal variables (A) and 'external' contextual factors (C).
2	Behavioral science	Attribution Theory	Kelvin Lancaster, F. Heider	Attempts to explain why ordinary people explain events as they do, including the adoption of new technology, and it suggests that the two most influential factors are internal attribution to characteristics of the individual or external attribution to a situation or event outside of personal control
3	Behavioral science	Comprehensive Technology Acceptance Framework	N.M.A. Huijts, Linda Steg	Proposes a complex model of technological diffusion predicated on experience and knowledge which are then mediated by trust, issues of procedural and distributive fairness, social norms, attitudes, and perceived behavioral control
4	Behavioral science	Cognitive Dissonance Theory	Leon Festinger	Argues that people in general are motivated to avoid internally inconsistent (dissonant) beliefs, attitudes and values, including when they adopt new technologies or practices

Ordering theories: the short-list

Table 1. Most frequently mentioned theoretical approaches (respondents = 35).

No.	Name	Frequency mentioned by respondents (n)	Frequency mentioned (%)
I	Sociotechnical Transitions	15	43
2	Social Practice Theory	14	40
3	Discourse Theory	10	29
4	Domestication Theory	9	26
5	Large Technical Systems	9	26
6	Social Construction of Technology	9	26
7	Sociotechnical Imaginaries	7	20
8	Actor-Network Theory	7	20
9	Social Justice Theory	7	20
10	Sociology of Expectations	6	17
П	Sustainable Development	6	17
12	Values Beliefs Norms Theory	5	14
13	Lifestyle Theory	4	H
14	Universal Theory of Acceptance and Use of Technology	4	П

Ordering theories: analytical focus

Normative

Evaluative, judgemental frameworks (outside the triangle)

Structure

Infrastructure, systems, and macrosocial norms

Relational

Processural frameworks which mediate structure, agency, and meaning

Agency

Individuals,
organizations, and
collective action

Meaning

Discourses, narratives, and visions

Ordering theories: fundamental assumptions Centre on Innovation and Energy Demand

	Functionalist- Institutionalist	Interpretivist	Critical Humanist	Conflict
Goals	To search for regularities and sources of disequilibrium	To describe and understand social complexity and multiple perspectives	To describe and problematize assumptions in order to identify potential for change	To identify and modify patterns of domination
Assumptions	Society as a self- regulating system	Society as socially constructed action	Society as historical change and development	Society as a system of struggle and oppression
Topical focus	Norms, values, and institutions	Discourse, practice, and culture	Historical change and cultural difference	Societal conflict
Approaches	Refinement through causal analysis	Discovery through code analysis	Insight through critical analysis	Liberation through structural analysis
Methods	Probing representative samples of subjects	Identifying specific cases, questioning informants	Comparing specific cases or existing research, questioning assumptions	Evaluating historical evidence and structural conditions
Exemplary articulations of theories that fit	UTAUT, VBN	Domestication Theory, Sociology of Expectation	Discourse Theory, Sociotechnical Imaginaries	Social Justice Theory, Sustainable Development

Conceptual contributions can have substantial impact

- Making a theoretical or conceptual contribution does not necessarily require new theories, or that all or many theories be integrated – merely that different representations are accounted for, or rigorously examined
- We may need to avoid dogmatism, privilegeseeking, and power-yielding, aim for more "theoretical triangulation"

"Theoretical monogamists or dogmatists remind me of obsolete aristocrats arguing over the maintaining of their 'pure' lineal bloodlines ... discipline focused pretensions amount at root to little more than vain bids for privilege and power."

UK's Research Excellence Framework Energy Demand

Four star	Quality that is world-leading in terms of originality, significance and rigour.
Three star	Quality that is internationally excellent in terms of originality, significance and rigour but which falls short of the highest standards of excellence.
Two star	Quality that is recognised internationally in terms of originality, significance and rigour.
One star	Quality that is recognised nationally in terms of originality, significance and rigour.
Unclassified	Quality that falls below the standard of nationally recognised work. Or work which does not meet the published definition of research for the purposes of this assessment.

- Self admission, I probably produce a 4 star myself only once every few years
- Especially hard to distinguish 3 star from 4 star: Like erotic films and pornography, you "know it when you see it"

It fits closely with criteria for "thought leaders"

Research Policy 41 (2012) 1219-1239

Contents lists available at SciVerse ScienceDirect

Research Policy

journal homepage: www.elsevier.com/locate/respol

The evolution of science policy and innovation studies

Ben R. Martin a,b,*

ARTICLE INFO

Article history:
Received 4 April 2011
Received in revised form
23 November 2011
Accepted 6 March 2012
Available online 5 April 2012

Keywords: Innovation studies Science policy History Evolution Highly cited publications

ABSTRACT

This article examines the origins and evolution of the field of science policy and innovation studies (SPIS). Like other studies in this Special Issue, it seeks to systematically identify the key intellectual developments in the field over the last 50 years by analysing the publications that have been highly cited by other researchers. The analysis reveals how the emerging field of SPIS drew upon a growing range of disciplines in the late 1950s and 1960s, and how the relationship with these disciplines evolved over time. Around the mid-1980s, substantial parts of SPIS started to coalesce into a more coherent field centred on the adoption of an evolutionary (or neo-Schumpeterian) economics framework, an interactive model of the innovation process, and (a little later) the concept of 'systems of innovation' and the resource-based view of the firm. The article concludes with a discussion of whether SPIS is perhaps in the early stages of becoming a discipline.

© 2012 Elsevier B.V. All rights reserved.

^a SPRU – Science and Technology Policy Research, University of Sussex, UK

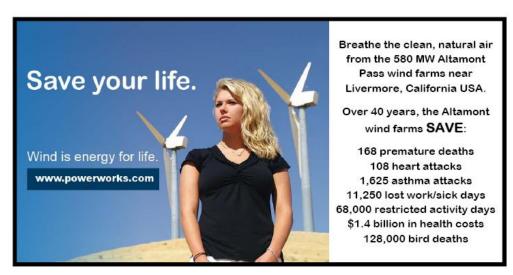
^b Centre for Science and Policy (CSAP) and Centre for Business Research, Judge Business School, University of Cambridge, UK

It fits closely with criteria for "thought leaders"

Z Griliches (1979), 'Assessing contribution of R&D to productivity growth', Bell J Econ

GC Loury (1979), 'Market structure and innovation', QJ Econ

	Citations	The field matures	
'Pre-history'		RH Hayes, WJ Abernathy (1980), 'Managing our way to econ decline', Harv Bus Rev	610
JA Schumpeter (1911/12), Theorie der wirtschaftlichen Entwicklung	500	FM Scherer (1980), Industrial Market Structure & Economic Performance (2nd ed.)	1970
WF Ogburn (1922+later eds), Social Change with Respect to Culture & Original Nature	520	JR Kimberly, MJ Evanisko (1981), 'Organizational innovation', Acad Mngt J	475
JA Schumpeter (1934), Theory of Economic Development	2470	G Dosi (1982), 'Technological paradigms and trajectories', Res Policy	1045
JA Schumpeter (1939), Business Cycles: Theoretical, Historical & Statistical Analysis	1305	C Freeman (1982), Economics of Industrial Innovation (2nd ed)	565
JA Schumpeter (1942), Capitalism, Socialism and Democracy	2395	C Freeman et al. (1982), Unemployment & Tech Innov'n: long waves & econ develpt	305
V Bush (1945), Science the Endless Frontier	560	M Jahoda (1982), Employment and Unemployment	450
JA Schumpeter (1947), Capitalism, Socialism and Democracy (2nd ed)	430	MI Kamien, NL Schwartz (1982), Market Structure & Innovation	545
JA Schumpeter (1954), Capitalism, Socialism and Democracy (3rd ed)	1410	RR Nelson & SG Winter (1982), An Evolutionary Theory of Economic Change	5500
HG Barnett (1953), Innovation: The Basis of Cultural Change	370	N Rosenberg (1982), Inside the Black Box: Technology & Economics	1000
The barriett (1995), innovation. The basis of Cultural Change	370	LG Tornatzky, KJ Klein (1982), 'Innov'n characteristics', IEEE Trans Eng Mngt	425
The pioneers		RM Kanter (1983), The Change Masters: Innovation & Entrepreneurship	1245
J Coleman et al. (1957), 'Diffusion of an innovation among physicians', Sociometry	310	EM Rogers (1983), Diffusion of Innovations (3rd ed.)	3300
Z Griliches (1957), 'Hybrid corn economics of tech change', Econometrica	840	JE Ettlie et al. (1984), 'Org strategy for radical vs incremental innov'n', Mngt Sc	310
RM Solow (1957), 'Tech change & aggregate production function', Rev Ec & Stat's	1790	Z Griliches (1984), R&D, Patents and Productivity	385
J Woodward (1958), Management and Technology	300	J Hausman et al. (1984), 'Econ models patents-R&D relationship', Econometrica	805
RR Nelson (1959), 'The simple economics of basic research', I Pol Econ	460	RH Hayes, SC Wheelwright (1984), Restoring Our Competitive Edge	960
T Burns, GM Stalker (1961), The Management of Innovation	2555	DA Hounshell (1984), From the American System to Mass Production	410
E Mansfield (1961), 'Technical change & the rate of imitation', Econometrica	585	K Pavitt (1984), 'Sectoral patterns of tech change', Res Policy	780
KJ Arrow (1962a), Econ welfare & alloc of resources for invention' in Rate & Direction	1460	WJ Abernathy, KB Clark (1985), 'Innov'n: mapping winds of creative destr'n', Res Policy	435
KJ Arrow (1962b), 'Economic implications of learning by doing', Rev Econ Stat's	1605	PA David (1985), 'Clio and economics of QWERTY', Am Econ Rev	1030
H.J. Habakkuk (1962), American and British Technology in the Nineteenth Century	325		
EM Rogers (1962), Diffusion of Innovations	1685	DJ Teece et al. (1997), 'Dynamic capabilities & strategic management', Strat Mngt J	2480
DJD Price (1963), Little Science, Big Science	1475	P Cooke, K Morgan (1998), The Associational Economy: Firms, Regions & Innovation	560
J Woodward (1965), Industrial Organization: Theory and Practice	1420	MA Heller, RS Eisenberg (1998), 'Can patents deter innovation? Anticommons', Science	580
FM Scherer (1965), 'Firm size & output of patented innovations', Am Econ Rev	320	RF Hurley, GTM Hult (1998), 'Innovation, mkt orientation & org learning', J Mktg	365
JS Coleman et al. (1966), Medical Innovation: A Diffusion Study	815	PJ Lane, M Lubatkin (1998), 'Relative absorptive capacity ', Str Mngt J	565
RR Nelson, ES Phelps (1966), 'Invest't in humans, tech diffusion', Am Econ Rev	400	J Nahapiet, S Ghoshal (1998), 'Soc capital, intell capital & org advantage', Acad Mngt Rev	1350
DC Pelz, FM Andrews (1966), Scientists in Organizations: Productive Climates for R&D	610	DJ Teece (1998), 'Capturing value from knowledge assets', Calif Mngt Rev	425
Schmookler (1966), Invention and Economic Growth	880	MM Crossan et al. (1999), 'An organizational learning framework', Acad Mngt Rev	395
E Mansfield (1968a), The Economics of Technological Change	395	R Gulati (1999), 'Network location and learning', Strat Mngt J	345
E Mansfield (1968b), Industrial Research and Technological Innovation	655	TE Stuart et al. (1999), ' performance of entrepreneurial ventures', Admin Sc Q	335
FM Bass (1969), 'New product growth model for consumer durables', <i>Mngt Sc</i>	1150	JS Brown, P Duguid (2000), The Social Life of Information	630
DS Landes (1969), The Unbound Prometheus: Tech Change & Econ Devlpt	830	JH Dyer, K Nobeoka (2000), 'Creating knowledge-sharing network', Str Mngt J	440
JL Walker (1969), 'Diffusion of innovations among American states', <i>Am Pol Sc Rev</i>	650	KM Eisenhardt, JA Martin (2000), 'Dynamic capabilities: what are they?', Strat Mngt J	1035
FM Scherer (1970), Industrial Market Structure & Economic Performance	930	H Etzkowitz, L Leydesdorff (2000), 'From national systems to Triple Helix', Res Pol	355
EM Rogers, FF Shoemaker (1971), Communication of Innovations	1820	AK Gupta, V Govindarajan (2000), 'Knowledge flows within MNCs', Strat Mngt J	420
G Zaltman et al. (1973), Innovations & Organizations	890	P Kale et al. (2000), 'Learning in strategic alliances', Strat Mngt J	340
C Freeman (1974), Economics of Industrial Innovation	305	S Shane, S Venkatamaran (2000), 'Promise of entrepreneurship as field of res', Acad Mngt Rev	630
R Rothwell et al. (1974), 'Project SAPPHO Phase II', Res Policy	330	V Venkatesh, FD Davis (2000), 'Theoretical ext'n of tech'y acceptance model', Mngt Sc	960
ER Berndt, DO Wood (1975), 'Tech'y, prices & derived demand for energy', Rev Ec Stat	520	JS Brown, P Duguid (2001), 'Knowledge and organization', Org Sc	370
PA David (1975), Technical Choice, Innovation and Economic Growth	330	WP Tsai (2001), 'Knowledge transfer in interorganizational networks', Acad Mngt J	315
JM Utterback, WJ Abernathy (1975), 'Dynamic model of innovation', Omega	505	R Florida (2002), The Rise of the Creative Class	1140
GW Downs, LB Mohr (1976), 'Conceptual issues in study of innov'n', Admin Sc Q	300	SA Zahra, G George (2002), 'Absorptive capacity: a review', Acad Mngt Rev	605
N Rosenberg (1976), Perspectives on Technology	700	M Zollo, SG Winter (2002), 'Deliberate learning & evol'n of dyn capabilities', Org Sc	515
JA Schumpeter (1976), Capitalism, Socialism and Democracy (6th ed)	500	HW Chesbrough (2003), Open Innovation	650
T] Allen (1977), Managing the Flow of Technology	1105	JA Dimasi et al. (2003), 'The price of innovation', J Health Econ	780
RR Nelson, SG Winter (1977), 'In search of a useful theory of innovation', <i>Res Policy</i>	480	EM Rogers (2003), Diffusion of Innovations (5th ed.)	1820
ML Tushman (1977), 'Special boundary roles in innovation process', Admin Sc Q	330	T Greenhalgh et al. (2004), 'Diffusion of innovations in service org'ns', Millbank Q	430
WI Abernathy (1978), The Productivity Dilemma: Roadblock to Innovation	315	E von Hippel (2005), Democratizing Innovation	405
WJ Abernathy, JM Utterback (1978), 'Patterns of ind innov'n', <i>Tech'y Rev</i>	640		
RG Cooper (1979), 'Dimensions of industrial new product success & failure', J Mktg	345		
RG Cooper (1979), Dimensions of industrial new product success & failure, J Mkg	545		


640 320

What is "Impact" beyond the REF then? Not only citations:

- Citation counts (ISI, Scopus, or Google Scholar)
- Author impact factor/h-index
- Downloads (journal, institutional website, or SSRN)
- Court decisions / testimony
- Political debates documenting use

- Press releases or citations in the popular press
- Personal communications/emails/requests
- Requests for consultancies
- Media interview requests
- Invitations to conferences
- In rare cases, advertising?

Translate your work

PRESS RELEASE

Date: September 19, 2016

RISK OF ANOTHER CHERNOBYL OR FUKUSHIMA TYPE ACCIDENT PLAUSIBLE, EXPERTS SAY

BIGGEST-EVER STATISTICAL ANALYSIS OF HISTORICAL ACCIDENTS SUGGESTS THAT NUCLEAR POWER
IS AN UNDERAPPRECIATED EXTREME RISK AND THAT MAJOR CHANGES WILL BE NEEDED TO
PREVENT FUTURE DISASTERS

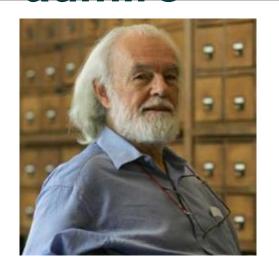
A team of risk experts who have carried out the biggest-ever analysis of nuclear accidents warn that the next disaster on the scale of Chernobyl or Fukushima may happen much sooner than the public realizes.

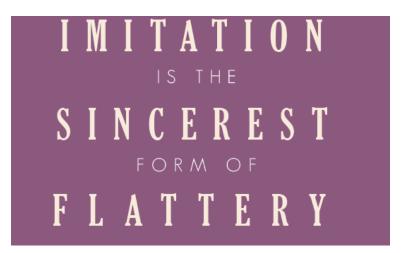
Translate your work

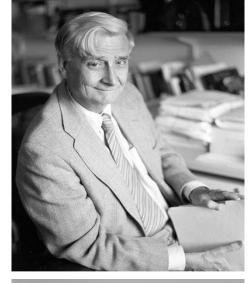
Accelerating low-carbon innovation: the role for phase-out policies

Policy Briefing 05

March 2017


Summary


Recommendations


- The Government's plan to phase out unabated coal in electricity generation is a good start, but similar approaches should be applied to decarbonise the heat and transport sectors.
- The Government's Industrial Strategy should consider how high-carbon practices will be phased out to make space and build investor confidence in low-carbon innovations.

Mimic and imitate those you admire

Mimic "look", structure, feel, framing, execution, etc.

Available online at www.sciencedirect.com

Research Policy 36 (2007) 399-417

Typology of sociotechnical transition pathways

Frank W. Geels*, Johan Schot

Eindhoven University of Technology, IPO 2.10, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Received 1 August 2003; received in revised form 1 November 2006; accepted 3 January 2007
Available online 20 February 2007

Abstract

Contributing to debates about transitions and system changes, this article has two aims. First, it uses criticisms on the multi-level perspective as stepping stones for further conceptual refinements. Second, it develops a typology of four transition pathways: transformation, reconfiguration, technological substitution, and de-alignment and re-alignment. These pathways differ in combinations of timing and nature of multi-level interactions. They are illustrated with historical examples.

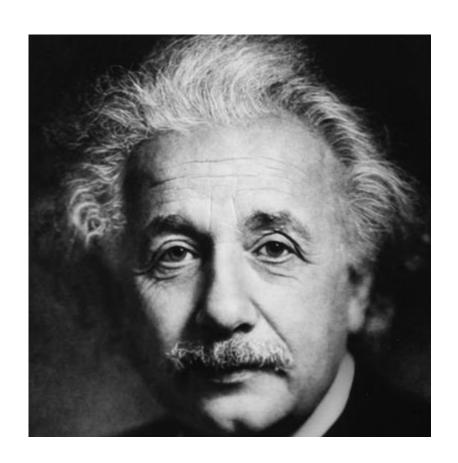
© 2007 Elsevier B.V. All rights reserved.

Keywords: Transition pathways; Sociotechnical regime; Multi-level perspective

Summary: Some actionable, near-term suggestions

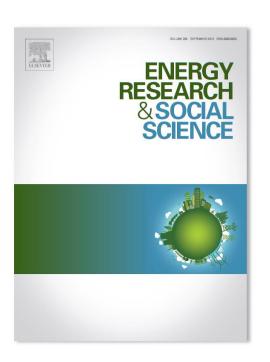
- Design some articles for maximum impact from the start, even at the proposal or pre-paper phase
 - Excel in some methods and/or mixed methods design
 - Have robust and triangulated data
 - Definitively answer a question
 - Or, address a timely social problem/debate
 - Or establish, test, and triangulate a theory
- Also realize the value to fecundity and 2-3 contributions a year, "less" excellent

Summary: Some actionable, near-term suggestions



- Choose good journals, with good reputations and impact factors, don't "waste" your precious time
- Gently mimic (and cite) those you admire, even write to them or write with them
- Don't be disciplinary chauvinists or theoretical monogamists
- Post publication, translate into press releases and policy briefs
- Be creative (and have fun)

Concluding thoughts



If we knew what we were looking for, it wouldn't be called "re-search."

Contact Information

Benjamin K. Sovacool, Ph.D Professor of Energy Policy University of Sussex Jubilee Building, Room 367 Falmer, East Sussex, BN1 9SL

International: +44 1273 877128

UK: 01273 877128

B.Sovacool@sussex.ac.uk

