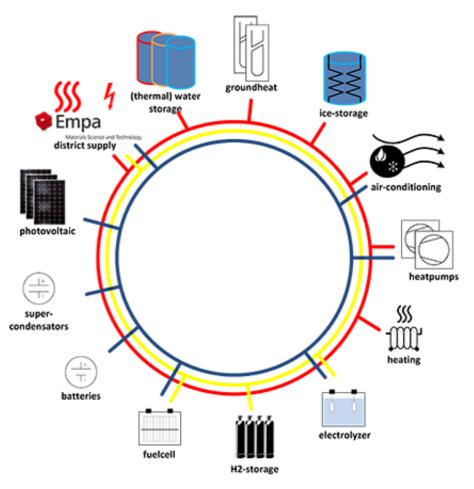


Data-Driven Adaptive Controller Parameterisation: A Bayesian Optimization Approach Master Thesis Presentation

Nicolas Schmid

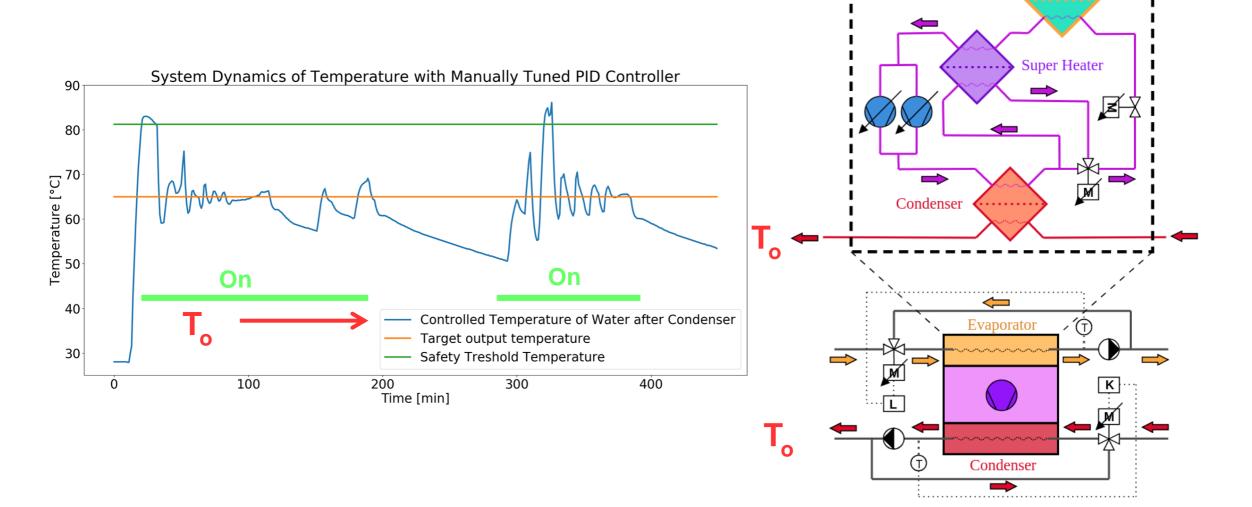
Supervision: Mohammad Khosravi, Philipp Heer (Empa), Annika Eichler, Roy Smith

The ehub at the Empa



ETH zürich

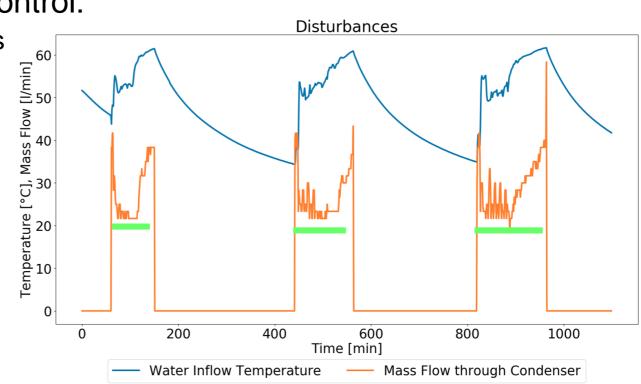
The High-Temperature Heat Pump



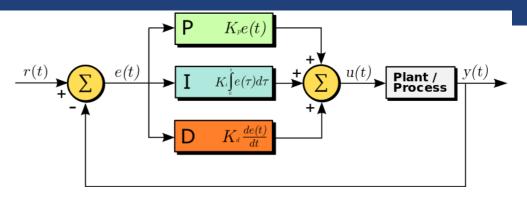
Evaporator

Reasons for Unsatisfying Performance

- Suboptimal parameterization of the PID controller
- Temperature challenging to control:
 - Strongly changing disturbances
 - Time delays
 - Non-linearities



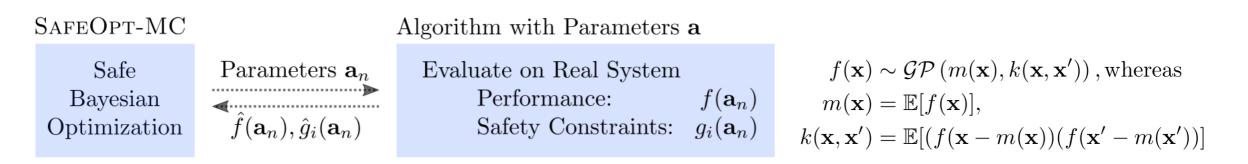
Motivation



- 95% of Industrial Controllers are PID like
- Physical modelling and system identification time-consuming and costly
- Optimization without physical model or system identification unfeasible
- Leads to dangerous and non-optimal tuning
- But sensor data of dynamic systems, especially with "Industry 4.0", frequently available

Solution: Safe Bayesian Optimization [Berkenkamp,2016]

- Needs no physical modelling or system identification
- Guarantees safety with high probability
- Bounds for optimality



[Berkenkamp, 2016] "Bayesian Optimization with Safety Constraints", CoRR

Gaussian Processes with Noisy Observations

 \mathbf{f}_*

- Prior:
- Likelihood Function:

• Bayes Rule:

Posteri distribution:

$$\begin{split} m(\mathbf{x}_{p}) &= 0\\ \operatorname{cov}(y_{p}, y_{q}) &= k(\mathbf{x}_{p}, \mathbf{x}_{q}) + \sigma_{n}^{2} \delta_{pq}. \end{split}$$

$$\begin{bmatrix} \mathbf{y}\\ \mathbf{f}_{*} \end{bmatrix} \sim \mathcal{N} \left(\mathbf{0}, \begin{bmatrix} K(X, X) + \sigma_{n}^{2} \mathbb{I} & K(X, X_{*})\\ K(X_{*}, X) & K(X_{*}, X_{*}) \end{bmatrix} \right)$$

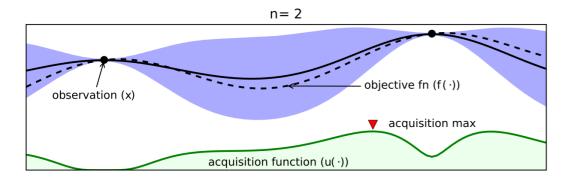
$$\mathcal{D} &= (\mathbf{x}_{i}, y_{i}), i = 1 : N \text{ and } \mathbf{y} = f(\mathbf{x}) + \epsilon\\ Bayes Rule: \quad p(f|\mathcal{D}) &= \frac{(p(\mathcal{D}|f)p(f)}{p(\mathcal{D})}$$

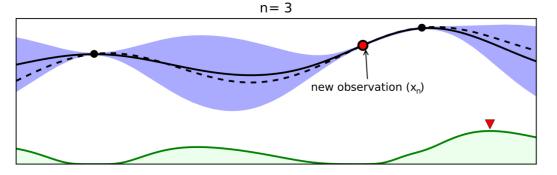
$$X, \mathbf{y}, X_{*} \sim \mathcal{N} \left(\bar{\mathbf{f}}_{*}, \operatorname{cov}(\mathbf{f}_{*}) \right), \text{ with } \bar{\mathbf{f}}_{*} = \mathbb{E}[\mathbf{f}_{*}|X, \mathbf{y}, X_{*}] = K(X_{*}, X)[K(X, X) + \sigma_{n}^{2} \mathbb{I}]^{-1}\mathbf{y}, \\ \operatorname{cov}(\mathbf{f}_{*}) &= K(X_{*}, X_{*}) - K(X_{*}, X)[K(X, X) + \sigma_{n}^{2} \mathbb{I}]^{-1}K(X, X_{*}) \end{split}$$

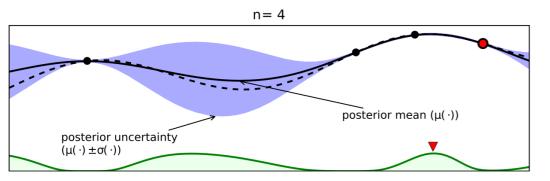
2

ETH zürich

Basics of Bayesian Optimization

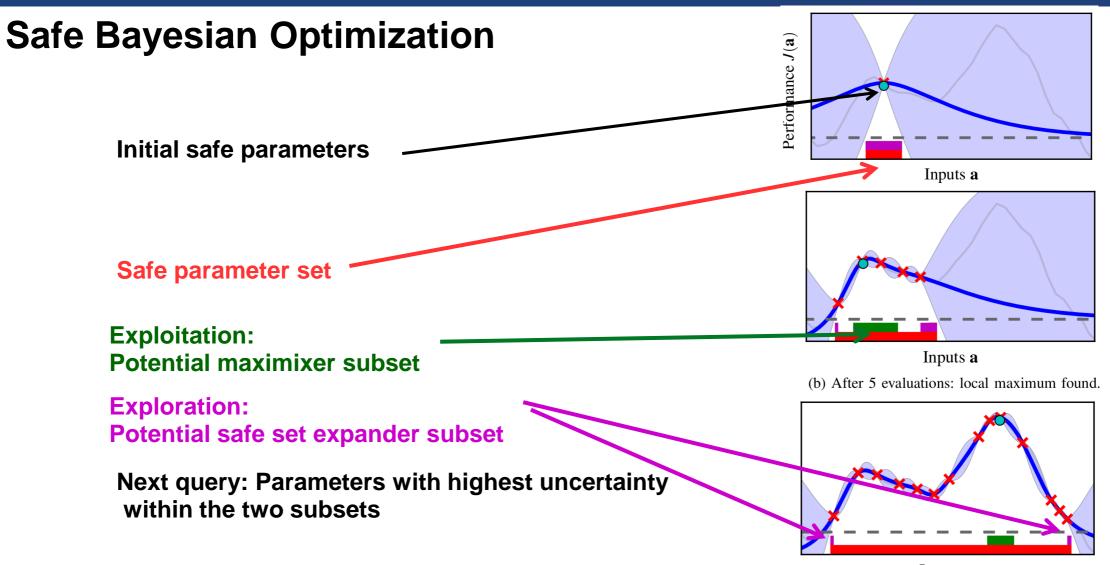






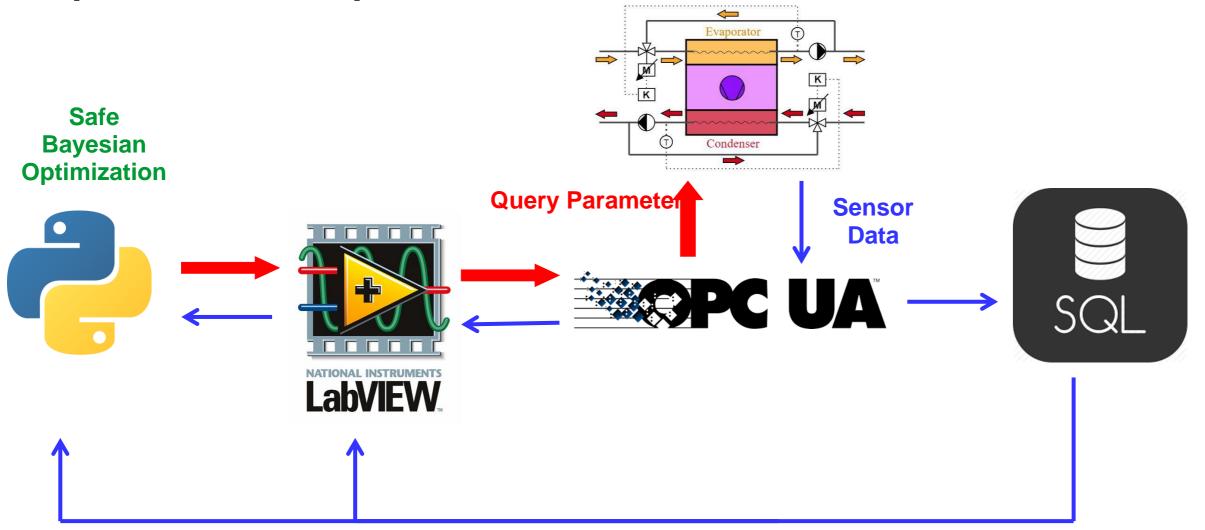
Model objective function $f(\mathbf{x})$ as a Gaussian process: $f(\mathbf{x}) \sim \mathcal{GP}(m(\mathbf{x}), k(\mathbf{x}, \mathbf{x}'))$, whereas $m(\mathbf{x}) = \mathbb{E}[f(\mathbf{x})],$ $k(\mathbf{x}, \mathbf{x}') = \mathbb{E}[(f(\mathbf{x} - m(\mathbf{x}))(f(\mathbf{x}' - m(\mathbf{x}')))]$

•

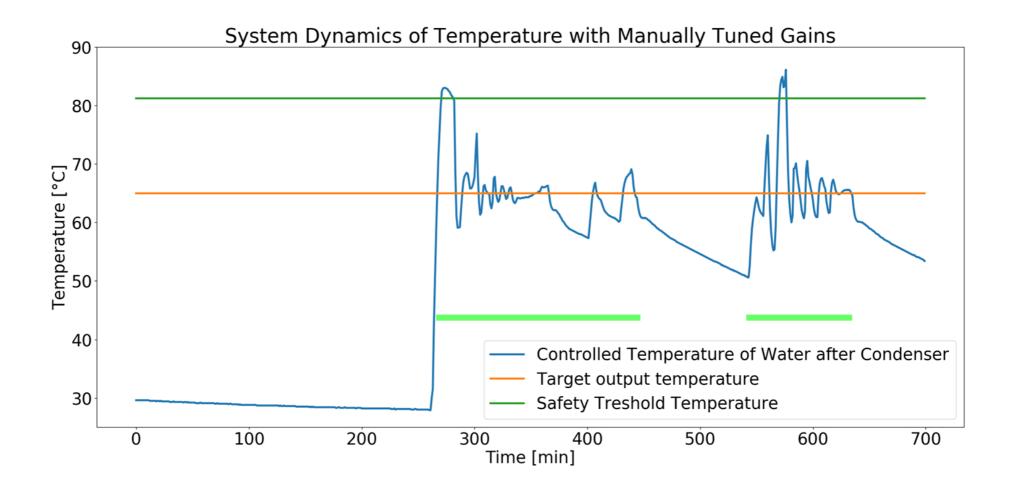


Inputs **a** (c) After 13 evaluations: global maximum found.

Experimental Setup for Online Optimization



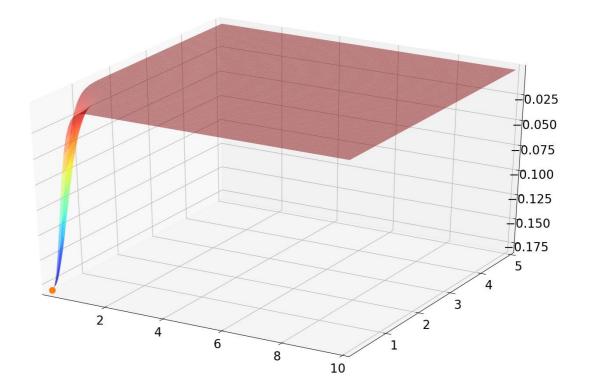
Experiment: Reducing the Overshoot



Experiment: Reducing the Overshoot cont.

- Performance: Overshoot
- Safety Constraint: Overshoot
- Safety Treshold: const.=81.25 °C
- Inital safe parameters:
 - Kp=0.02
 - Ki=0.01
- GP Prior ~ $N(0,k_c)$
- Composite Kernel k_c:

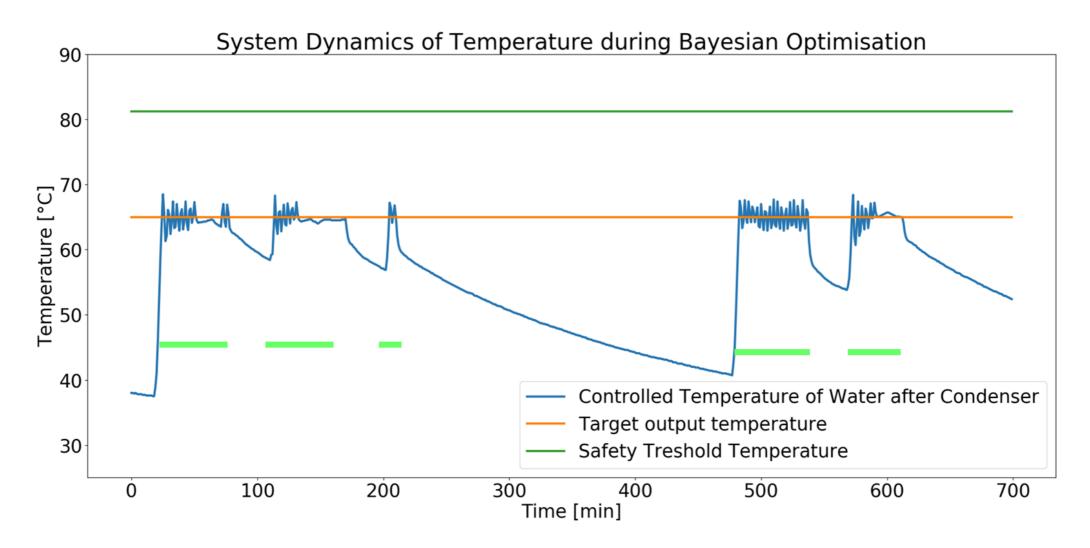
 $k_c(\mathbf{x}_p, \mathbf{x}_q) = k_1(\mathbf{x}_p, \mathbf{x}_q) + k_2(\mathbf{x}_p, \mathbf{x}_q) + \sigma_n^2 \delta_{pq}, whereas$ $k_1(\mathbf{x}_p, \mathbf{x}_q) = \sigma_f^2 \exp\left(-\frac{1}{2}(\mathbf{x}_p - \mathbf{x}_q)^{\mathsf{T}} M(\mathbf{x}_p - \mathbf{x}_q)\right),$ $k_2(\mathbf{x}_p, \mathbf{x}_q) = const.$



Experiment: Reducing the Overshoot cont. Performance 0.05 0.00 +0.05+0.10. +0.155 3 2 2 Ki 4 6 Кр 8 10

ETH zürich

Result: Reducing the Overshoot

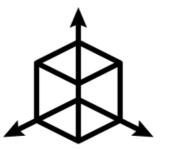


The Burden of Optimizing the Gains of the Heat Pump

- Just a few queries per day, i.e. 2-4 per day
- Limited in experimental settings due to safety issues

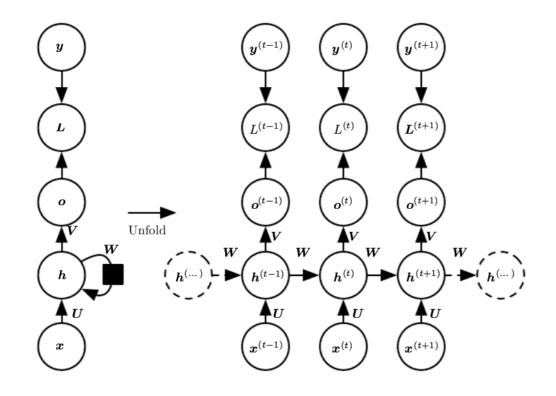
Solution: Data-Driven Simulations of the Dynamic System

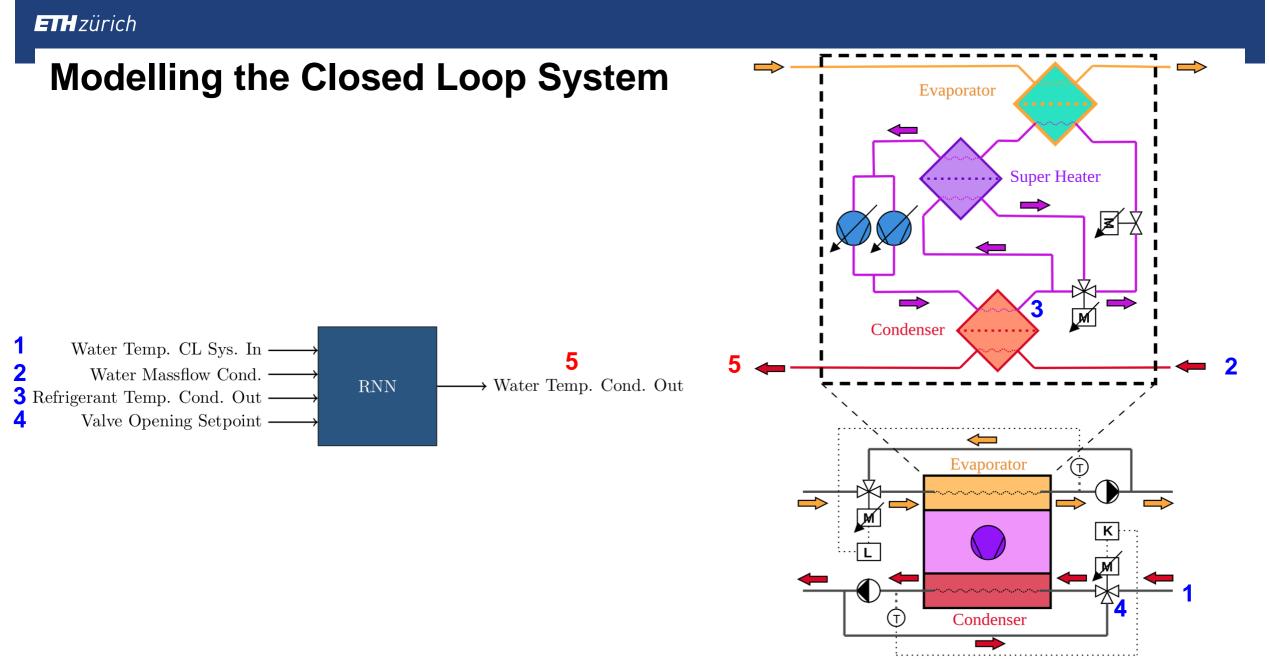
- Enables higher dimensional optimization problems:
- More parameters, contexts
- Fast rigourous testing and validation of different hyperparameters
- Assist and speed up optimization on the real system



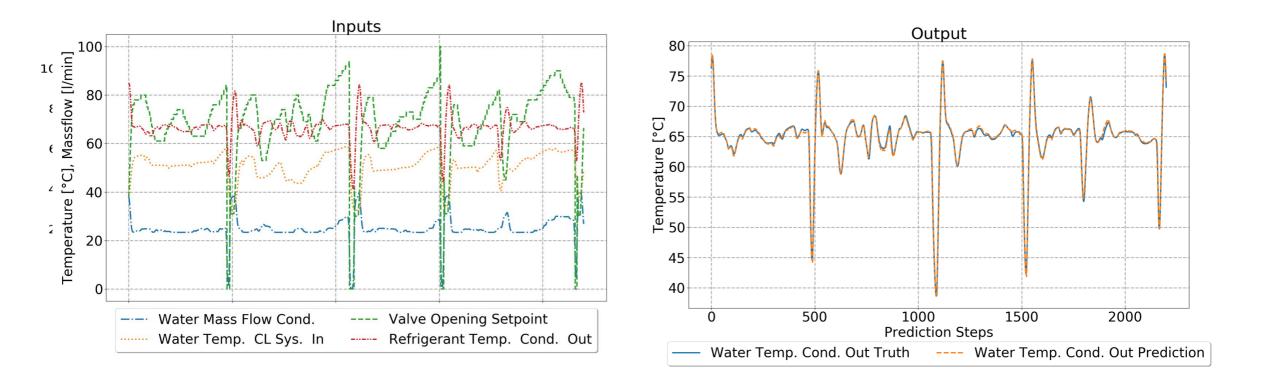
Recurrent Neural Networks

- Emulate dynamic systems
- Need fewer parameters than classical Feed Forward Neural Networks



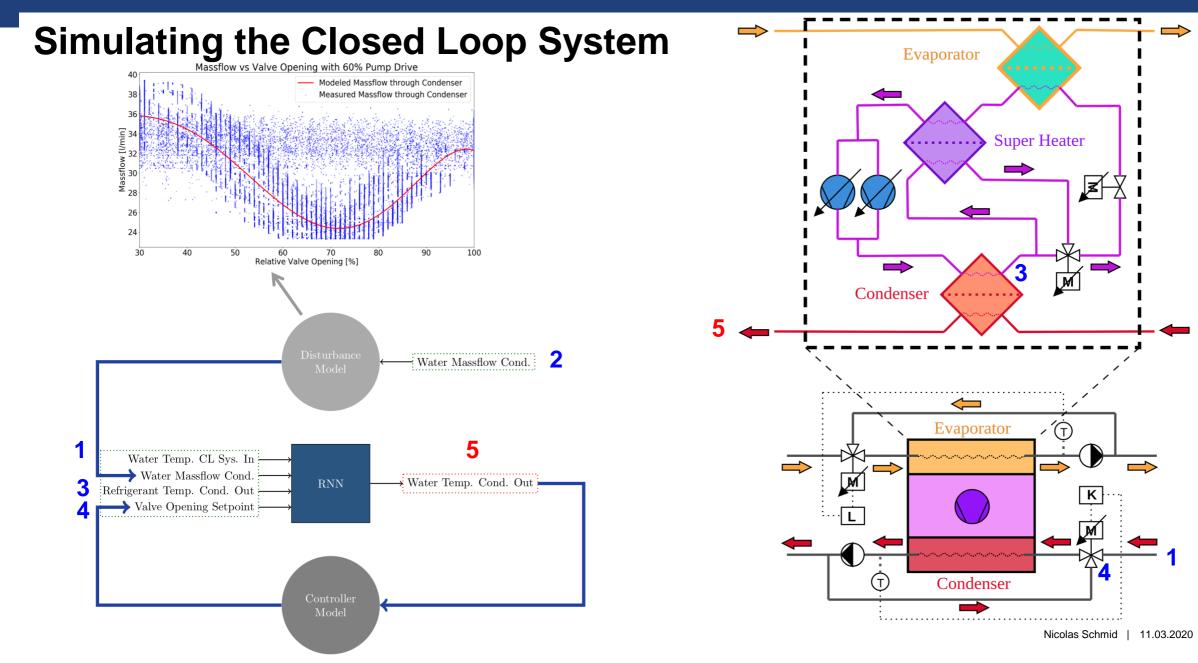


Modelling the Closed Loop System



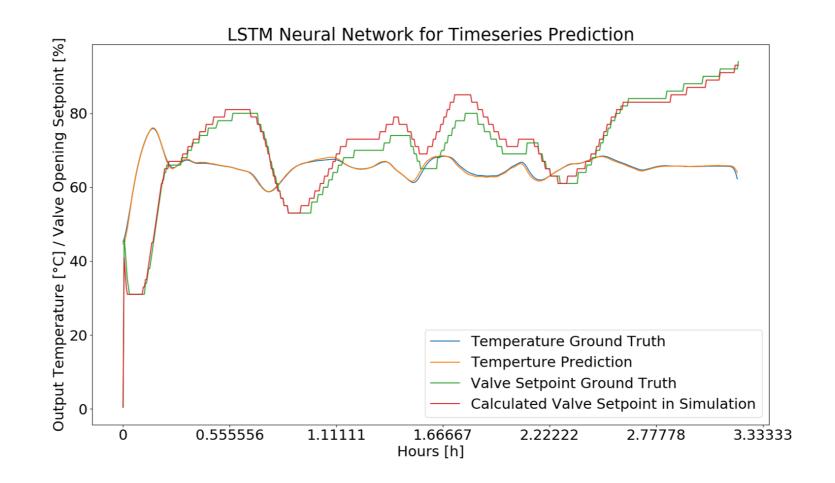
MSE=0.00054 °C²

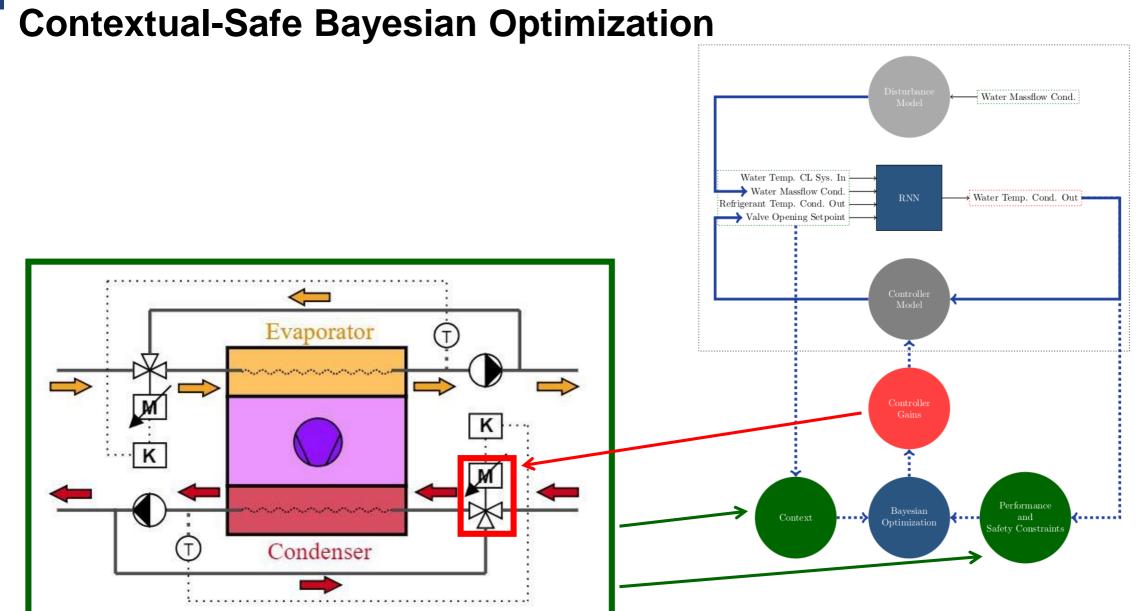
ETHzürich



20

Closed Loop Simulations





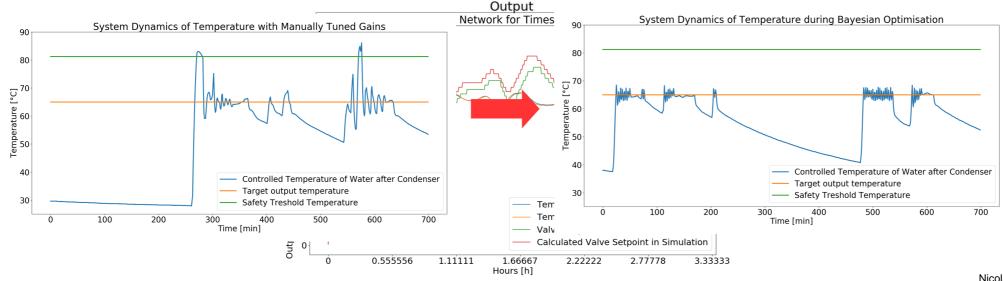
Conclusion

Strongly optimized different performance metrics

Approximated the closed loop dynamics realisticely

Generated a fast and accurate data-driven simulation framework

Integrated contextual-safe Bayesian optimization in the simulation framework

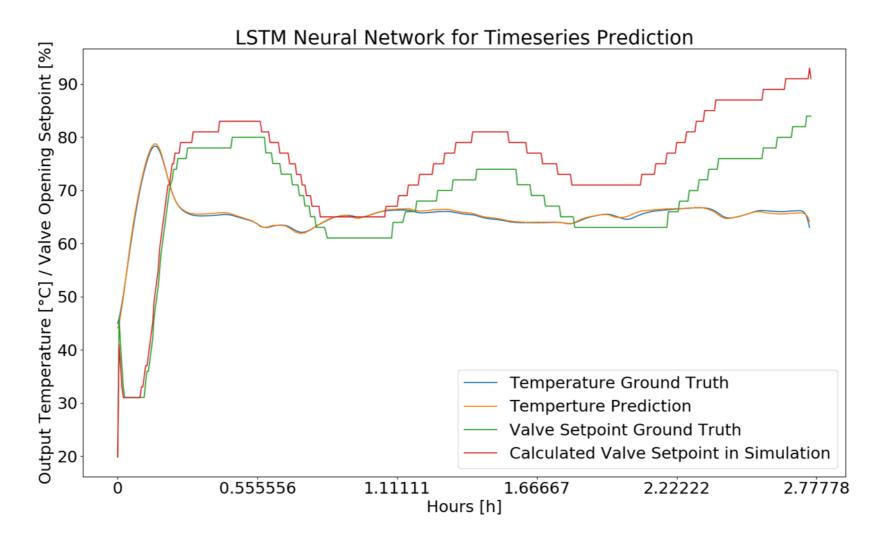


Thanks!

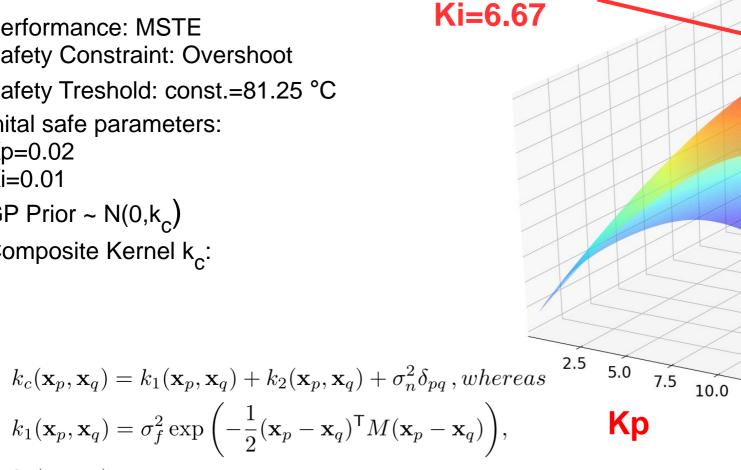
Outlook

- Systematic experiments with the simulation framework including contexts
- Derive Hyperparameter settings from data-driven simulations
- Trade of simulations and experiments on the real system
- Use simulation framework for learning and optimizing other systems

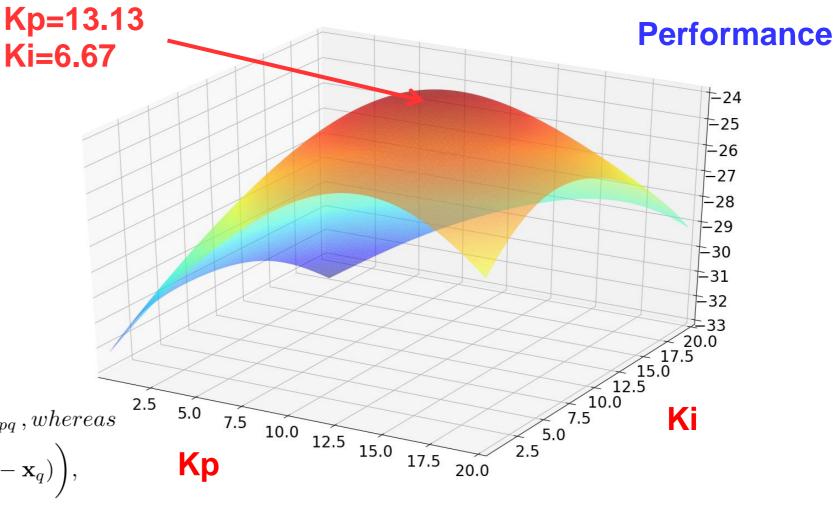
Closed Loop Simulations cont.



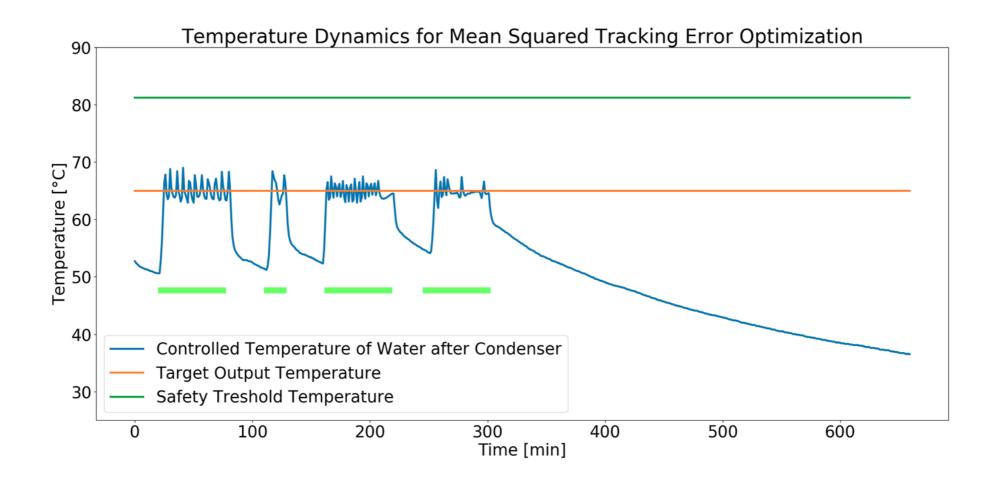
Reducing the Mean Squared Tracking Error



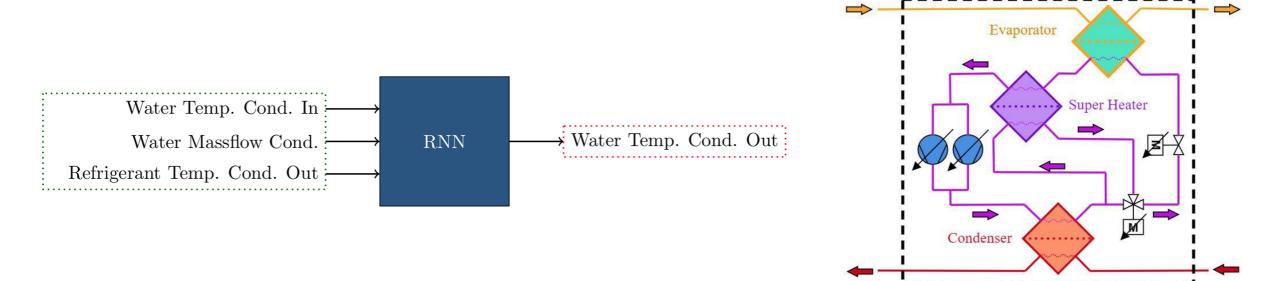
 $k_2(\mathbf{x}_p, \mathbf{x}_q) = const.$



Reducing the Mean Squared Tracking Error



Modelling the Condenser



Long Short-Term Memory Recurrent Neural Network

The RNN Setup for the Closed Loop Model

- 1. Learning Model: RNN, similar to graph (3.7)
- 2. Input Dimensions: 4, see RNN in figure (??)
- 3. Output Dimensions: 1, see RNN in figure (??)
- 4. Layers: 128 = input sequence length
- 5. Neurons per Hidden Layer: 16
- 6. Training Batch Size: 256
- 7. Total Number of Trainable Parameters: 1457
- 8. Output Layer: Linear
- 9. Prepossessing: Gaussian filtering
- 10. Resampling Interval: 20s, corresponds to 20s steps
- 11. Prediction Length: 1
- 12. Error: Mean Squared Error
- 13. Optimizer: Adam with Gradient Clipping and Decaying Learning Rates [23] [36]
- 14. **Regularization:** Recurrent Dropout [3]
- 15. **Gated Cell:** LSTM [21]
- 16. Activation Function: Leaky ReLU [48]
- 17. Parameter Initialization: Weights: He Initialization, Biases: zero [17]
- 18. Normalization: Layer Normalization [22]