The Use of Ever Increasing Datasets in Macroeconomic Forecasting

Prof. Dr. Jan-Egbert Sturm

12. Juni 2015

Macroeconomic Forecasting Methods

- Indicator approach
 - Business tendency surveys
 - Buildings permits
 - Job advertisements
 - ...

- Econometric approaches
 - Time series econometrics
 - Structural econometric models
KOF Business Tendency Surveys

- Manufacturing (M, Q)
- Construction (M, Q)
- Project Engineering (M, Q)
- Wholesale Trade (Q)
- Retail Trade (M)
- Gastronomy (Q)
- Hotel Business (Q)
- Banks (M, Q)
- Insurances (M, Q)
- Other Financial Services (M, Q)
- (Non-financial) Service Sectors (Q)
- KOF Consensus Forecast (Q)
- KOF Investment Survey (H)
- KOF Innovation Survey (2 years)

KOF Business Tendency Surveys

1. Business situation
 a) We judge our business situation overall as
 - [] good
 - [] satisfactory
 - [] poor
 b) Over the last 3 months*, our business situation has
 - [] improved
 - [] remained unchanged
 - [] deteriorated
 c) Over the next 6 months*, our business situation will
 - [] improve
 - [] remain unchanged
 - [] deteriorate
Business Situation Assessment in German and Swiss Industry

Indicators and Forecasts at KOF

Indicators
- KOF Economic Barometer
- KOF Business Situation Indicator
- KOF Surprise Indicator
- KOF Employment Indicator
- KOF Monetary Policy Communicator
- KOF Baublatt Indicator
- KOF Globalisation Index
- KOF Youth Labour Market Index

Forecasts
- KOF International Forecasts
- KOF Forecasts for Switzerland
- KOF Forecasts for Swiss Health Care Expenditures
- KOF Forecasts for Tourism in Switzerland
- Joint Economic Forecast for Germany
- Forecasts for the Construction Sector (Euroconstruct)
- Forecasts for Europe (EEAG)
Econometric Approaches

- Examples
 - Autoregressive estimation approaches (time series)
 - Estimate an equation like: \(C_t = \alpha + \beta C_{t-1} + \epsilon_t \)
 - Theory-based estimation approaches (structural models)
 - Estimate equations like:
 \[
 \begin{align*}
 C_t &= \gamma + \delta Y_t + u_t \\
 I_t &= \eta + \theta r_t + v_t \\
 Y_t &= C_t + I_t
 \end{align*}
 \]

KOF Macroeconometric Model

- The KOF macroeconometric model nowadays consists of
 - Approximately 300 equations,
 - Of which about 50 are behavioural equations
 - And is continuously being updated with new data allowing for changes in the behavioural equations
- (Smaller-scaled) models of the area experts are used to
 - Provide estimates of "exogenous" variables
 - Verify and adjust/update the macroeconometric model
- Currently we are working on a (large-scale) Bayesian VAR model
 - Using priors coming from the area experts
 - Producing confidence intervals for all variables
Swiss GDP: KOF forecast and data/forecast revisions
Reference: SECO release after 1st SFSO release

Sources: SECO, KOF

KOF Economic Barometer

- Many composite leading indicators for business cycle developments exist around the world
 - OECD – Composite Leading Indicators for 47 countries/regions
 - The Conference Board – Leading Economic Indices for 13 countries
 - CEPR/Banca d’Italia – EUROCOIN
 - Many others – mostly at the national level

- Commonalities
 - Reference series needed
 - Selection of variables needed
 - Aggregation method needed

- Relationships and data availability changes over time
 - Once in a while an overhaul is needed
 - This is done at an ad hoc basis and is often time consuming

Construction of the 2014 version

- Objectives
 - No longer use a filter for smoothing by broadening the set of underlying time series
 - Define a standardized procedure to select variables
 - Automatize and regularly apply the variable selection procedure
- Three production stages
 - Preparation phase (done once)
 - Choose business cycle concept, define the reference series, and define the automated selection procedure
 - Variable selection procedure (repeated annually)
 - Pre-select the pool of potential variables
 - Apply the automated selection procedure
 - Calculate the weights using principle component analysis
 - Construction of the leading indicator (repeated monthly)
 - Construct the monthly indicator using the extracted weights

Comparing the 2006 and 2014 Versions

Version 2006

- Reference series:
 - y-o-y GDP growth
- Variable selection procedure
 - Cross-correlation analysis
 - Expert knowledge
 - Limited # var. selected
 - No updating procedure
- Construction process
 - Principal component analysis
 - Filter to smooth indicator
 - The selected filter assures that only revisions in the underlying variables cause revisions in the KOF Barometer

Version 2014

- Reference series:
 - smoothed m-o-m GDP growth
- Variable selection procedure
 - Cross-correlation analysis
 - Automated selection process
 - Large # var. selected
 - Updated yearly
- Construction process
 - Principal component analysis
 - No filtering
 - Only data revisions in the underlying variables cause revisions in the KOF Barometer (within a vintage)
Pre-selection of potential variables
(2013 vintage of the 2014 Version)

- International variables: currently 32 variables
 - Concentrate on the 11 most important trading partners
 - 1 Business tendency & 1 consumer survey question per country
 - Ifo World Economic Survey, assessment and expectations for 5 regions

- National variables: currently 444 variables
 - KOF Business Tendency Surveys (411)
 - SECO Consumer Survey (9)
 - BFS, SECO, OZD, SNB (24)

 For each of these variables we determine all
 - sensible transformation (level, log level, quarterly difference, monthly difference, annual difference, balance, positive, negative) (4356)
 - theoretically expected sign of the correlation with the reference series

 Except for year-over-year differences, X12-ARIMA is used to seasonally adjust all variables and their transformations.

Automated selection procedure

- A variable has valid observations throughout the defined (10-year) observation window used in the cross-correlation analysis.
- The sign of the cross-correlation complies with the exogenously imposed sign restriction.
- Only those variables are retained, for which the maximum (absolute) cross-correlation is found at the lead range specified between 0 and 6 months.
- The computed cross-correlation surpasses a defined threshold.
- Of those transformations that survive, we take the one that optimizes:
 \[\max U = |r_{\text{max}}| \times \sqrt{h_{\text{max}} + 1} \]
- Finally, the variance of these variables is collapsed into a composite indicator as the first principal component.
 - This first principal component is standardised to have a mean of 100 and standard deviation of 10 during the observation window.
 - (Dynamic factor analysis approach of Giannone et al. (2008) results in basically the same – using 2013 vintage, the correlation equals 0.998)
Reference series and KOF Barometer

Yearly updates in September

- Swiss quarterly SNA is published by SECO
- Swiss annual SNA is published by SFSO
 - Every summer a new vintage is released
 - This vintage contains the first release of previous year’s growth by the SFSO
- The subsequent quarterly release of SECO incorporates this annual information
Different vintages of the reference series

Annualised growth (%)

Source: SECO

Pseudo real-time vintages of different versions of the KOF Barometer

Index

KOF Barometer Version 2006 (right-hand scale)

Source: KOF
Reasons for revisions between vintages

1. The 10-year reference window is shifted by one year.
2. Existing GDP data might be revised.
3. New variables might become available and some might no longer be published.

- Consequently, the set of variables selected and their loading coefficients might change from one vintage to another.
- That is, we allow the composite indicator to learn using a largely automated procedure.

Bruttoinlandprodukt und KOF-Barometer

Sources: Seco, KOF
Conclusions

- Forecasts and Indicators have become more data intensive
 - More and more time series have become available
 - KOF Economic Barometer uses about 5000 different time series
 - Computation time have gone down substantially
 - techniques to use this have been, and continue to be, developed
 - Estimating large-scale Bayesian VAR models

- Macroeconomic theory have become more micro-based
 - Macroeconomic researchers are more and more using firm-, consumer- and product-specific information
 - KOF Surprise Indicator (firm-specific information)
 - Research using product data from Swiss Customs Administration