Automated Data Curation at Scale

Bernhard Bicher (CEO)
Dr. Noah S. Bieler (Principal Data Scientist)

Winterthur, 12th of June 2015
Data Preparation Today

Data Scientists spend up to 80% of their time preparing data. Data Preparation is no self-service activity without IT involvement. Semi-automatic integration of more than 25 data sources is unfeasible. Data origins and lineage are frequently lost during processing.
Three Options

- **Manual**
 - Hire work force
 - Unreliable
 - Not sustainable
 - Expensive

- **Rule-based**
 - ETL
 - High Maintenance
 - Completeness
 - Needs expensive IT guy

- **Probabilistic**
 - Use statistics, NLP, ML
 - Choosing and combining the right algorithms
 - Only approximate results

ETL Extract Transform Load
NLP Natural Language Processing
ML Machine Learning
The Art of Data Integration

- Identify Sources
- Profile Data
- Clean Data
- Normalise Data
- Identify Joins
- Entity Resolution
- Deduplication
- Post-Processing

Integrated Data

Automation using Probabilistic Approaches

Automation Potential:
- Low
- Medium
- High
- Very High
Probabilistic Methods and Approaches

- Identify Sources
- Profile Data
- Clean Data
- Normalise Data
- Identify Joins
- Entity Resolution
- Deduplication
- Post-Processing

Identify Sources
Outlier Detection, Authoritative Data, Type Detection

Profile Data
Encoding Errors Fixing, Pattern Mining, Column Swap

Clean Data
Probability Distribution, Entropy Measurement

Normalise Data

Identify Joins
Naive vs. Advanced ML Approaches

Entity Resolution

Deduplication
Computational Complexity Reduction
Profile Data

Example: Probabilistic Schema Detection

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Premium</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Müller</td>
<td>TRUE</td>
<td>Winterthur</td>
<td>N/A</td>
</tr>
<tr>
<td>Hans</td>
<td>Mueller</td>
<td>1</td>
<td>Winterthur</td>
<td>CH</td>
</tr>
<tr>
<td>Jan</td>
<td>Muster</td>
<td>FALSE</td>
<td>Windisch</td>
<td>CH</td>
</tr>
</tbody>
</table>

- Profiling based on Authoritative Data
- Outlier Detection based on Histograms
- Identify Missing Values
- Content Detection using Decision Trees
 - String
 - Mostly Characters
 - All Capital
 - Dates
 - Mixed
 - Phone Numbers
 - Formatted Numbers
Clean, Normalise and Impute Data

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Premium</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max</td>
<td>Morgenthal</td>
<td>TRUE</td>
<td>Winterthur</td>
<td></td>
</tr>
<tr>
<td>Hans</td>
<td>Müller</td>
<td>TRUE</td>
<td>Winterthur</td>
<td>CH</td>
</tr>
<tr>
<td>Hans</td>
<td>Mueller</td>
<td>1</td>
<td>CH</td>
<td>Winterthur</td>
</tr>
<tr>
<td>Jan</td>
<td>Muster</td>
<td>FALSE</td>
<td>Windisch</td>
<td>CHE</td>
</tr>
</tbody>
</table>

Pattern Mining

\[
\text{city} \Rightarrow \text{Country} = \text{CH}
\]

Fix Encoding Errors
Müller → Müller

Normalisation according to a Synonym Table

<table>
<thead>
<tr>
<th>ISO2</th>
<th>ISO3</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>CH</td>
<td>CHE</td>
<td>Schweiz</td>
</tr>
<tr>
<td>DE</td>
<td>DEU</td>
<td>Deutschland</td>
</tr>
<tr>
<td>FR</td>
<td>FRA</td>
<td>Frankreich</td>
</tr>
</tbody>
</table>

Column Swap
Identify Join Columns

Comparison of Probability Distribution

Datosilo 1

<table>
<thead>
<tr>
<th>FirstName</th>
<th>ClientID</th>
<th>Premium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martin</td>
<td>1028934-1</td>
<td>TRUE</td>
</tr>
<tr>
<td>Sara</td>
<td>7462946-5</td>
<td>TRUE</td>
</tr>
<tr>
<td>Anna</td>
<td>9471991-3</td>
<td>FALSE</td>
</tr>
</tbody>
</table>

Datosilo 2

<table>
<thead>
<tr>
<th>CID</th>
<th>ProductName</th>
<th>ProductID</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-9471991</td>
<td>Monitor LCD</td>
<td>6413</td>
</tr>
<tr>
<td>C-7462946</td>
<td>Mouse Laser</td>
<td>5433</td>
</tr>
<tr>
<td>C-1028934</td>
<td>Keyboard QWERTY</td>
<td>961</td>
</tr>
</tbody>
</table>

The probability distributions μ_1 and μ_1' are similar, as indicated by the visual representation.
Entity Resolution & Deduplication

Naive Approach

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Premium</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Müller</td>
<td>TRUE</td>
<td>Winterthur</td>
<td></td>
</tr>
<tr>
<td>Hans</td>
<td>Mueller</td>
<td>1</td>
<td>Winterthur</td>
<td>CH</td>
</tr>
<tr>
<td>Jan</td>
<td>Muster</td>
<td>FALSE</td>
<td>Windisch</td>
<td>CH</td>
</tr>
</tbody>
</table>

All weights w_i are the same.

$$w_i = \{0.2, 0.2, 0.2, 0.2, 0.2 \}$$

$$s = \sum_i w_i s_i$$

Advanced Approach

<table>
<thead>
<tr>
<th>First Name</th>
<th>Last Name</th>
<th>Premium</th>
<th>City</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hans</td>
<td>Müller</td>
<td>TRUE</td>
<td>Winterthur</td>
<td>CH</td>
</tr>
<tr>
<td>Hans</td>
<td>Müller</td>
<td>TRUE</td>
<td>Winterthur</td>
<td>CH</td>
</tr>
<tr>
<td>Jan</td>
<td>Muster</td>
<td>FALSE</td>
<td>Windisch</td>
<td>CH</td>
</tr>
</tbody>
</table>

Adapt the weights w_i using ML and optimise similarity calculations.

$$w_i = \{0.3, 0.3, 0.1, 0.2, 0.1 \}$$

De-Noising and normalisation helps to compare entities.

User feedback is incorporated into the estimate of the weights $\{w_i\}$ using ML.
Better out-of-the-box precision using ML and pre-estimated weights.

Start by initialising weights according to the column content.
For some cases, this can even eliminate the need for training at all.
Tackling Complexity in Deduplication

![Clustering Diagram]

- \(n = 10^6 \)
- \(k = 10^2 \)
- \(m = 50 \)

\[
\begin{align*}
\text{n} & \quad \text{Number of data records} \\
\text{k} & \quad \text{Number of clusters} \\
\text{m} & \quad \text{Number of iterations}
\end{align*}
\]

\[
\begin{align*}
n^2 & \rightarrow 10^{12} \\
0.5n^2 & \rightarrow 0.5 \cdot 10^{12} \\
k \cdot n \cdot m + 0.5 \cdot k(n/k)^2 & \rightarrow 10^{10}
\end{align*}
\]

Better scalability leads to faster execution.

Higher data locality, a “triangle” can run on a single node.
State-of-the-Art Infrastructure

Map-Reduce style using Apache Spark

Scalable: runs on a single Laptop as well as on a 10k-node Cluster.

Supports streaming, and provides MLlib and GraphX for machine learning and graph algorithms.
Summary

1. **Probabilistic methods save precious time**
 Decide on trade-off between fast data integration and precision.

2. **Leverage machine learning**
 Use business expert feedback to improve system precision and degree of automation.

3. **Broad data analysis**
 Mine over 100 instead of just 25 data sources.
Join us at www.meetup.com/spark-zurich!

Empowering organisations to unlock their wealth of data