

Dorothea Wiesmann, IBM Research – Zurich

Machine Learning & Predictive Analytics for IT Services

Broad Application of Analytics and Data Science

 Various projects in IBM Research – Zurich applying statistical analysis and machine learning methods in the area of sales and marketing, electrical energy management, science

© 2014 IBM Corporation

FLEXLAST

Use refrigerated warehouses from a Swiss supermarket chain to help balance fluctuations of the available sun and wind energy on the energy grid.

SQUARE KILOMETER ARRAY (DOME)

Five-year collaboration with ASTRON to research extremely fast, but lowpower exascale computer systems targeted for the international Square Kilometre Array (SKA), the world's largest and most sensitive radio telescope.

Broad Application of Analytics and Data Science

- Various projects in IBM Research Zurich applying statistical analysis and machine learning methods in the area of sales and marketing, electrical energy management, science
- focus of today's presentation on improving IT Services with machine learning and predictive analytics:
 - Introduction to IT Service Delivery
 - Service Analytics Methods and application examples

IBM Services IT Infrastructure Landscape at a Glance

© 2013 IBM Corporation

Service Analytics Method Workload Characterization: Concept and Methods

- Goal: determine workload arrival patterns and service efforts related to different service feature
- Use case:
 - Reduce occurrence of prevalent failure types by classifying incident failure types into a priori known failure classes to prioritize root cause analysis for large-volume types
 - Reduce violation of service agreement levels (SLA) by assigning tickets to Subject Matter Experts who have handled similar tickets in the past
 - Reducing problem determination effort by recommending relevant solutions from similar previously solved incidents
- Methods:
 - Workload classification: gradient boosted model with unigram decomposition and stop word removal, random forest
 - Request clustering: hierarchical clustering and k-means clustering

Workload Characterization: Problematic Server Configurations (1/4)

- Objective: Through analytics of combined incident ticket and server configuration information data optimize IT Service Management by
 - identifying high risk/high workload server assets,
 - quantifying workload and risk driver pervasive across different IT environments

© 2013 IBM Corporation

Workload Characterization: Problematic Server Configurations (2/4)

- Ticket Text Classification Method: Gradient boosted model
 - Ensemble (weighted sum) of weak learners (decision/regression trees with K terminal nodes)
 - Steepest decent iterative procedure where each step selects the tree that minimizes the loss function at most (most closely approximates its gradient) on a random subsample of the training set
 - The corresponding multiplier of the chosen tree is then selected using line search
- Ticket Text Classification Results

Labeled Set

Ticket Class	Count	%
Non-actionable Tickets	1391	71.3%
Server Unavailable	105	5.4%
Disk/FS Capacity	214	11.0%
Other	238	12.2%
CPU/Memory	4	0.2 %

Ticket Class	Recall	Precision
Non-actionable Tickets	0.983	0.947
Server Unavailable	0.741	0.903
Disk/FS Capacity	0.941	0.987
Other	0.730	0.789
CPU/Memory	0	0

Workload Characterization: Problematic Server Configurations (3/4)

- Data Set: 10k servers (samples) and their OS-level incident tickets for 12 months
- Model: Random Forest
 - Able to handle categorical predictor readily
 - Captures nonlinear relationships
 - Robust against over-fitting and thus generalizes better
 - Not very sensitive to outliers in training data

Source: http://dovgalecs.com/blog/matlab-random-forest-classifier/

Workload Characterization: Problematic Server Configurations (4/4)

Imp	Improvement options Ticket details			Current incident behaviour Study period: 2013-05-01 - 2013-12-10			
		Remediation actions	Improvement forecast (?)		High-severity incidents (severity 1&2 tickets)	Problematic	11.57 per month
1	Best single C	DS refresh (to latest)		34%	All incidents (total tickets)	Problematic	14.57 per month
					Hardware & OS		
2	N	Aemory increase (3x)		9%	Hardware architecture	IBM x	
3	D	Disk capacity increase (2x)		8%	Age	8 years	
					Operating System MICROSOFT WINDOWS 20		WINDOWS 2000
4	D	Jisk capacity increase (3x)		8%	Purpose	Application	
5	D	Disk capacity increase (4x)		8%	Virtualization level	N/A	
6	Best combined C	DS refresh (to latest) +		40%	Utilization measures		
	D	Disk capacity increase (2x)			Avg CPU utilization	14.31%	
7	C	DS refresh (to latest) + Disk capacity increase (3x)		40%	Max CPU utilization	N/A	
8	C	DS refresh (to latest) +		40%	Memory utilization	69.51%	
Dis	Disk capacity increase (4x)		Disk utilization	15.16%			

Service Analytics Method Performance Prediction

- Goal: leverage the insight on factors that impact IT Service delivery to predict service cost, i.e. volume and effort to perform service activities
- Use case:
 - Predict volumes expected for certain types of services activities. In combination with peractivity effort estimation this allows to tackle business problems pertaining to staff planning, SLA feasibility assessment, and return of investment of automation projects.
- Methods:
 - Multivariate time series forecasting
 - Longitudinal methods

Service Analytics Method Workforce Optimization (1/3)

- Goal: improve IT management effectiveness through resource planning and staffing recommendation. Two main categories: workforce optimization and workload optimization
- Example: Optimize staffing of IT Service teams

Delivery Teams, located in over **20** delivery centers from **8** service function areas, including over **15,000** delivery personnel

Lack of standards in work data recording

(e.g., no telephony switches to record data)

Strict requirements on service level targets

Service Analytics Method Workforce Optimization (2/3)

Source: Y. Diao et al., WSC 2011 and CNSM 2011

Service Analytics Method Workforce Optimization (3/3)

© 2013 IBM Corporation

Thank You!