Sustainable Bytes: Embedding Sustainability
Awareness 1n Computer Science Education

Michael Wahler
Institute of Computer Science
Zurich University of Applied Sciences (ZHAW)
Winterthur, Switzerland
ORCID 0009-0006-5301-6315

Abstract—Industry and academia recognize the importance of
computer scientists having sustainability awareness and knowl-
edge. While bachelor’s programs in computer science provide a
comprehensive education, the topic of sustainability is typically
only briefly covered in a few elective modules. Consequently, most
computer science graduates lack awareness and fundamental
knowledge of software sustainability. How can we ensure that all
graduates receive basic sustainability training without increasing
their workload or removing other courses from the curriculum?

To achieve this goal, we have developed the novel concept
of Sustainable Bytes, a voluntary online course whose sections
(the bytes) are linked from the educational material of existing
mandatory courses. In this experience report, we present the
goals of the course, the key decisions made during the design
process, and an overview of its contents. Evaluation and usage
statistics from the first instance of the course reveal that only
26 % of first-semester students accessed it and 7 % completed
it. Consequently, we share lessons learned to help us and other
educators increase student participation in the future.

Index Terms—sustainability, computer science, software engi-
neering, education.

I. INTRODUCTION

Computer science (CS) students across universities receive
a broad and sound knowledge of computer science and
software engineering. However, the curricula hardly cover
the integration of sustainability concepts in software engi-
neering education, which is an important part of the CS
curriculum. Yet, software engineering (SE) processes should
meet sustainability criteria across different dimensions [1],
[2]. Some of these criteria may conflict with one another,
necessitating trade-offs. Therefore, software engineers must
possess sustainability awareness and knowledge to navigate
these challenges effectively. As an example, optimizing a
computationally heavy algorithm may result in a lower energy
consumption (having a positive effect on the environmental
dimension of sustainability), but can lead to an increased
mental load of the programmers (negatively impacting the in-
dividual dimension) or increased maintenance cost (negatively
impacting the economic dimension).

Therefore, there is a growing understanding among educa-
tors that contemporary CS education should cover sustainabil-
ity concepts [3], [4]. In the industry, there is a need for tech-
nical personnel to acquire sustainability knowledge through

Partially funded by the ZHAW Sustainable Impact Program

Josef Spillner
Institute of Computer Science
Zurich University of Applied Sciences (ZHAW)
Winterthur, Switzerland
ORCID 0000-0002-5312-5996

in-house or external training and collaborations [5]. Today,
however, there is often little knowledge about sustainability in
the industry, except for technical aspects such as performance
and maintainability [6], [7].

Our university, Zurich University of Applied Sciences, is
one of the largest in Switzerland with strong and established
CS programs. Our CS curriculum' provides students with a
wealth of theoretical knowledge and practical skills, which
allows them to build high-quality software systems that meet
customer requirements. Yet, most of our CS students obtain
their degree without any exposure to the topic of sustainability
in software engineering. Around one third of our students
participate in elective modules that cover some aspects of
sustainability, but these modules do not provide a comprehen-
sive view of all dimensions of sustainability. Therefore, there
is a need for a course on sustainable software and software
engineering and exposing all our students to it. The content of
this course should cover the theoretical aspects of these skills
(e.g., awareness and knowledge of sustainability, influence
of quality criteria on sustainability) and the practical aspects
(e.g., increasing maintainability by decoupling software com-
ponents).

Therefore, we have designed and implemented such a course
(called Sustainable Bytes) at the start of the autumn semester
2024 and made it available to the 204 first-year CS students.
At the end of the semester, we analyzed usage statistics and
conducted a survey among these students. In this experience
report on the first implementation of the course, we first
present the background of our CS program and basic terms
of sustainability in Section II. Then, we introduce the goals
and design of our course (Section III), followed by the course
contents (Section IV). In Section V, we evaluate our course
based on the usage statistics and the survey. In Section VI,
we present valuable lessons learned and discuss how future
iterations of the course can be improved. We present related
work on sustainability in (CS) education and on the industry
needs for such education in Section VII. We conclude our
report in Section VIIL.

Uhttps://www.zhaw.ch/en/engineering/study/bachelors-degree-programmes/
computer-science


https://www.zhaw.ch/en/engineering/study/bachelors-degree-programmes/computer-science
https://www.zhaw.ch/en/engineering/study/bachelors-degree-programmes/computer-science

II. BACKGROUND

Our university offers a bachelor’s degree program in Com-
puter Science. We claim that its educational content is rep-
resentative of many CS programs, aligned with educational
best practices such as ACM’s curricula recommendations that
cover societal topics like ethics and accessibility, but not
sustainability [8]. The program comprises 180 ECTS credits
and requires 6 or 8 semesters for full-time and part-time
students, respectively. During the first two years, our students
learn foundational concepts and methods of computer science
with a focus on a current, comprehensive, practice-based, and
sustainable education. In the last year, our students choose
from a selection of compulsory elective modules, which
provide in-depth knowledge on selected topics. In their final
semester, they also write their bachelor’s thesis.

Compulsory module lessons are conducted in face-to-face
classes of 20-30 students, allowing close interaction with
lecturers who assist with theoretical and practical advice. The
lessons for compulsory elective modules usually take place in
slightly larger classes of 20-50 students. Teaching materials
and organizational information for each module are provided
in the learning management system Moodle?, with one course
per module and semester.

Despite its emphasis on sustainable education—meaning
that the students can apply what they have learned for the rest
of their lives—the mandatory modules of the program do not
explicitly cover sustainability aspects in CS or SE as a manda-
tory part, despite teaching many sustainable practices such
as agile software development or communication skills for
team projects. There are, however, two elective modules that
incorporate sustainability aspects in the in curriculum. First,
the module “Serverless and Cloud Application Development “
(SCAD, taught by the second author), the students learn about
energy consumption of cloud solutions along with cloud-native
sustainability [9] and must account for it in their practice
project. Second, the module “Advanced Software Engineering”
(ASE, taught by the first author and Marcela Ruiz) covers the
different dimensions of sustainability introduced by Duboc
et al. [10] and teaches the students to relate to them in
requirements engineering and software design.

While teaching their elective modules, the authors observed
that students are curious and eager to learn about sustainability
in computer science. They take the topic seriously, quickly
grasp key concepts, and apply them to their work. Many
of them choose topics around sustainability and the United
Nations’ 17 Sustainable Development Goals (SDGs) [11] for
their semester projects when given a free choice of topic.
However, only around one third of our CS students attend
one of these two elective modules on average, which means
that around two thirds of our students obtain their degree with
virtually no knowledge of sustainability in computer science.
This is something that we want to change by introducing
Sustainable Bytes.

Zhttps://moodle.org

A. Sustainable Software

Sustainability is often used synonymously with environmen-
tal protection such as green software design and coding [12],
carbon footprint of software applications and services at
runtime [13], [14] and the battery efficiency of devices [15].
These are important learning units, but they often remain on a
technical level, leaving a gap between technology and socio-
technical education.

In our work, we therefore use the broader definition of
sustainable development of the UN’s Brundtland report [16],
which sets the goal of meeting “the needs of the present
without compromising the ability of future generations to meet
their own needs”. We apply this notion both to the software
being developed and the software engineering process itself.

Furthermore, in the context of CS and SE, sustainability
has a broader focus than environmental protection. We follow
the definition of Duboc et al., who present five dimensions of
software system sustainability [10]. Originally developed for
requirements engineering, this framework is relevant and suit-
able for the other phases in software engineering too [1], [17].
These five dimensions comprise environmental aspects (e.g.,
the energy consumption of the software during its creation
(development) and operation, social aspects (e.g., contributing
to equal opportunities by making software accessible to a
diverse set of users), technical aspects (e.g., maintainability
and adaptability of the software), economical aspects (e.g.,
operating costs of the software compared to its benefits), and
individual aspects (e.g., improving developer’s quality of life
by automating repetitive tasks).

III. GoALS AND DESIGN OF THE COURSE

Software engineering directly and indirectly impacts the
environment, society, and individuals. To understand, assess,
and optimize this impact, our CS students need additional
knowledge about sustainability in software engineering. There-
fore, we defined these goals for the new Sustainable Bytes
course:

Goal 1 Create sustainability awareness in all our computer
science students.

Goal 2 Provide educational material on sustainable software
and software engineering.

Goal 3 Enable our students to assess their own knowledge of
the course material.

Before designing the course, we discussed with the study
program director and the module coordinators for the software
engineering modules how such a course could be integrated
into the current curriculum. The main requirement was that
the course must not incur additional obligatory workload
to the students. The reason is that the curriculum of our
bachelor’s degree program is designed for 180 ECTS credits
(see Section II). Adding an obligatory course would entail
removing an existing course from the program.

When designing the course, we followed the constructive
alignment principle [18], which starts with setting the intended
learning outcomes. We suggest three intended learning out-
comes (ILO) according to the previously set goals:


https://moodle.org

ILO1 The students know five different dimensions of software
sustainability (according to the Sustainability Awareness
Framework [10]) and the different orders of effect of
sustainability (levels 1-3).

1LO2 The students know which aspects of software engi-

neering have an impact on the sustainability of digital

products and services.

The students can examine a software engineering pro-

cess for sustainability criteria and improve it for greater

sustainability.

ILO3

Having defined the intended learning outcomes, we sub-
sequently define the teaching and learning activities (Sec-
tion III-A) and the examinations (Section III-B).

A. Teaching and Learning Activities

As mentioned in Section II, the bachelor’s degree program
our university primarily focuses on face-to-face classes. How-
ever, there is an important reason that speaks against designing
our course as a face-to-face class. Since our course can only be
offered as a voluntary course, we would ask students to attend
an on-site lecture for which they do not receive any ECTS
credits. Therefore, only a highly motivated and curious fraction
of students would attend the course, which contradicts Goal 1.
Furthermore, it is likely that in this scenario, those students
who are already interested in sustainability would attend a
face-to-face class and we would preach to the converted.

Therefore, we decided to design the course as an online
course, which allows students to access the course material
at a convenient time. The downside of this decision is the
lack of direct contact between students and lecturers, and
among students. Consequently, students learn in isolation,
necessitating digital means for asking questions and tracking
progress.

For deciding on the format of the online course, we con-
sidered several options. Important factors were the location of
the teaching material (in a central location or distributed across
other courses), the accessibility for different user groups, the
possibilities of making the course interactive, and the longevity
of the course and its teaching materials over a longer time
horizon. The options that were considered are summarized in
Table L.

Based on these factors, we decided to build a new dedicated
Moodle course on sustainable software engineering, using
Moodle’s features of integrating different types of content and
various ways of establishing interaction with its users. This
brings us closer to achieving Goal 2 (providing educational
material) and Goal 3 (self-assessment of students’ knowledge).
However, building yet another Moodle course takes us away
from Goal 1 (reaching all students): how can we make our
students aware of the new course and encourage them to
register for it? This gave us the idea of enriching the Moodle
courses of compulsory modules with pointers to relevant
sections of the new Moodle course. We call these pointers
Sustainable Bytes.

We selected to add Sustainable Bytes to four compulsory
modules (called base modules in this paper) in the first two

semesters of the bachelor’s degree program. The Introduction
to Programming 1&2 modules (abbreviated as PROG) cover
programming concepts such as object-oriented and functional
programming, clean code, software testing, and concurrent
programming. The Software Projects 1&2 modules (abbrevi-
ated as PM) introduce the students to project work in software
engineering. In these modules, the students develop soft-
ware in teams. Besides sharpening their technical and project
management skills, the students learn about written and oral
communication and basic requirements analysis. This wide
range of topics covers several aspects in different dimensions
of sustainability.

B. Examinations

The constructive alignment principle [18] suggests design-
ing examinations after the learning outcomes and the course
contents have been defined. For a voluntary course, we do not
see a need to provide examinations. However, we wanted to
allow students to assess their knowledge and be able to repeat
relevant parts of the course. To provide such self-assessments,
we decided to use the quiz feature of Moodle. Moodle quizzes
can be configured flexibly with different types of questions,
such as multiple-choice questions or cloze-text tests.

It is obvious that students learn more if they not only read
the contents of the online course, but also reflect on it, e.g., by
completing the quizzes. This requires additional effort. Since
we cannot grant ECTS credits for the course at the moment,
we decided to add an element of gamification to the course.
Therefore, we designed virtual badges that are awarded to
students for completing the quizzes. These badges can be
collected on the Moodle platform across all courses. When
they complete all quizzes, they are awarded an additional
badge, Sustainability Champion (see Figure 1).

Fig. 1. Virtual Badge “Sustainability Champion®.

IV. COURSE CONTENTS

The Moodle page of the course consists of four chapters:
an introduction to sustainability, an explanation of the five
dimensions of sustainability for software, an investigation
of the relation of first-year software engineering topics with
sustainability, and the quizzes.

Before the actual content starts, there is a motivation for
the course and usage instructions that help students navigate
through the content of the course.



TABLE I
OPTIONS CONSIDERED FOR ONLINE COURSE DESIGN

Course type Teaching material Access

Interactivity Longevity

Existing Moodle
courses of
mandatory modules

spread across several

courses participants

restricted to course

good - forums and
quizzes

courses may close after
they end

New dedicated in one place anyone at institution good - forums and can be open indefinitely

Moodle course quizzes

Static website in one place anyone at institution and n/a can be open indefinitely
beyond

Interactive website in one place anyone at institution and very flexible can be open indefinitely,

beyond

Fig. 2 gives a visual impression of the course navigation
structure. The module-specific acronym references (e.g. PM1)
are known to the students and are specific to our computer
science program whereas the general navigation approach
could be re-used in other institutions and curricula.

A. Introduction to Sustainability

Assuming that most students only have a marginal under-
standing of sustainability (at least in the context of software
and software engineering), the first chapter of the course
introduces the concept of sustainability, emphasizing its impor-
tance in various domains, including natural resources, species
preservation, and human well-being based on the Brundtland
Commission’s 1987 report [16]. The chapter highlights the
significant impact of digitalization on society and the environ-
ment, noting the high energy consumption of data centers and
the pressure on software engineers as examples. It stresses
the responsibility of future software engineers to consider
sustainability in their work, providing tools and methods to
create sustainable digital solutions.

The chapter also categorizes the impacts on sustainability
of software engineering into three levels (following Hilty
et al. [19]): first-order (direct impacts like energy-efficient
coding), second-order (indirect benefits such as long-term cost
savings and improved productivity), and third-order (broad
societal and environmental changes). It connects software
engineering to the United Nations’ SDGs, illustrating how
digital tools can contribute to goals such as reducing poverty,
improving health, and promoting clean energy. The chapter
concludes by emphasizing the need for both sustainable soft-
ware products and SE processes to ensure long-term positive
impacts on sustainability.

At the end of the chapter, the students find additional
links to literature on selected advanced topics. These links
are presented with a guide that suggests a reading order and
provides a short summary for each linked document.

B. Dimensions of Sustainability

The second chapter introduces the five dimensions of sus-
tainability from Duboc et al. [10]. To this end, it provides a
description of each dimension with examples and pointers to
the respective topics in the base modules, which are explained

but maintenance effort for
interactive elements

in a separate chapter. In this chapter, we also integrated our
existing material from the modules ASE and SCAD in a section
“Additional Literature and Links”.

C. Topics from the Base Modules

In this chapter of our course, we present selected topics from
the base modules (PROG and PM) and explain their relation to
sustainability dimensions. We also link to the sustainability
criteria defined in [1] where applicable.

We started by iterating through all topics covered by the
base modules and investigated their relation to sustainable
software engineering practices. Out of all topics, only a few
are not easily relatable to sustainability such as file I/O, iter-
ating over object collections, or debugging practices. For the
remaining topics, we systematically examined their impact on
each sustainability dimension and provided examples. Where
applicable, we added literature references for further study.

The programming courses start with an introduction to
object-oriented programming and cover advanced topics such
as refactoring, testing, and concurrent programming. The
project courses cover team communication, collaboration, and
development tools.

1) Class Design and Refactoring: Students learn about de-
sign by responsibility, coupling, and cohesion, which improve
code readability, comprehensibility, maintainability, and exten-
sibility. These factors are crucial for the fechnical dimension of
sustainability. Readability and comprehensibility also reduce
the mental load on software engineers, positively influencing
the individual dimension of sustainability. Regular refactoring
is essential for maintaining clean code [20].

2) Clean Code: We teach that clean code is fundamental for
enhancing the SE process and ensuring long-term project suc-
cess. Clean code reduces developers’ mental load and stress,
positively impacting the individual dimension of sustainability.
It also facilitates scalability and adaptability, crucial for the
technical dimension of sustainability [21].

3) Software Testing: Software testing positively impacts the
economic dimension of sustainability by ensuring reliability,
efficiency, and maintainability. Rigorous testing identifies and
fixes defects early, reducing costly post-deployment issues and
maintenance costs. Comprehensive testing extends software



Dimensions of Sust...

Introduction to Sust...

Social Sustainability

& Hidden from students

it

Topics from PROG1

This is the end. But ...

Economic Sustaina...

® Hidden from students

Topics from PM1

Topics from PROG2

Technical Sustainab... Environmental Sust...

® Hidden from students ® Hidden from students

Individual Sustaina...

® Hidden from students

Fig. 2. Appearance of the course content as tiles in Moodle.

lifespan and reduces technical debt, leading to long-term cost
savings and higher customer satisfaction. However, running
tests requires hardware and electricity, impacting the environ-
mental dimension of sustainability. Test managers must ensure
no unnecessary tests are run [22].

4) Graphical User Interfaces: The social dimension of
sustainability is impacted by GUIs. A sustainable GUI con-
siders diverse user needs, promoting inclusiveness by support-
ing multiple languages, accommodating cultural differences,
and ensuring compatibility with assistive technologies. As an
example, having a multicultural engineering team helps with
creating inclusive interfaces [23], [24].

5) Concurrent Programming: Proper thread synchroniza-
tion optimizes resource utilization and reduces energy con-
sumption, positively impacting the environmental dimension
of sustainability. Efficient synchronization minimizes delays
and conflicts, leading to better CPU usage and lower en-
ergy requirements. This also benefits the economic dimension
by reducing energy costs, especially in cloud environments.
Frameworks are available to help developers optimize energy
consumption [25].

6) Team Reflection and Retrospective: In PM, students
write reflections and hold retrospectives after each project,
impacting the social dimension of sustainability by fostering
continuous improvement and collaboration. This enhances
communication, mutual respect, and team morale, reducing
turnover rates and building a cohesive, motivated team [26].

7) Decision Protocol: Writing a decision protocol promotes
transparency, accountability, and inclusiveness in decision-
making, addressing the social dimension of sustainability. It

ensures all team members have a voice, mitigating misunder-
standings and fostering trust and respect [27].

8) Issue Tracking: In PM, students learn to use GitHub’s
issue tracking feature, which promotes transparency and col-
laboration, positively affecting the social dimension of sustain-
ability. It also supports economic sustainability by improving
project management and resource allocation, and fechnical
sustainability by enhancing code quality and maintainabil-
ity [28].

9) Al-supported Programming: Al tools like GitHub Copi-
lot and ChatGPT are used for generating code, tests, and
documentation. We teach students the advantages and risks
of these tools and guide them in applying them carefully.
Al-generated code can impact the fechnical dimension of
sustainability positively or negatively, depending on its quality.
Al tools can reduce developers’ mental load, enhancing the
individual dimension of sustainability, but over-reliance can
lead to skill erosion. The environmental impact of Al, due
to energy consumption, is also a concern. Students need
sustainability awareness to assess the pros and cons of Al
in programming [10], [29].

10) Project Management: GitHub’s project management
features enhance the economic sustainability of software
projects by improving collaboration, productivity, and resource
optimization. Features such as Issues, Project Boards, and
Pull Requests centralize task tracking and workflow manage-
ment, reducing coordination time and errors. Automation with
GitHub Actions increases efficiency by handling repetitive
tasks, allowing developers to focus on complex work, leading
to faster project completion and lower labor costs. Integration



with various development tools ensures effective resource use,
reducing operational costs and waste.

Using collaboration tools such as GitHub also promotes
transparency and traceability with version control and doc-
umentation, helping teams to quickly identify and address
issues, improving social sustainability [27], [28]. Comprehen-
sive documentation and knowledge sharing reduce the learning
curve for new team members and ensure consistent project
quality, contributing to cost-effective and efficient software
projects.

11) Project Outline and Elevator Pitch: In the second
semester, students must create a project idea, document it,
and pitch it to investors. A well-developed project outline
and elevator pitch ensure clear technical requirements and
solutions, reducing technical debt and future problems, thus
enhancing technical sustainability.

A precise project outline helps plan the budget realistically,
avoiding unexpected costs, impacting economic sustainability.
However, overly detailed planning can incur high initial costs
and may lack flexibility to adapt to market changes.

A transparent project outline and elevator pitch promote
stakeholder involvement and confidence, positively influencing
social sustainability. Clear goals and structure increase team
motivation and engagement, leading to better participation
from all members [30].

D. Interactive Elements

The course provides two types of interactive elements:
a forum and quizzes. The forum is titled “Discussion and
Feedback” and contains two discussion threads from the start.
The first thread, “Feedback”, which asks participants what they
liked, what they do not agree with, and about what topics
they want to hear more. The second thread, “Issue Tracking”,
encourages participants to report problems with the structure
or content of the course such as broken hyperlinks.

There are 6 quizzes that can be used by the course par-
ticipants to self-assess their knowledge. The first quiz covers
the general concept of sustainability (see Section IV-A). The
other quizzes cover one dimension of sustainability each. Each
quiz contains between 6 and 16 questions, most of which are
multiple choice questions except for a few cloze-text tests.

V. COURSE LOGISTICS AND EVALUATION

The Sustainable Bytes course was ready in Moodle at the
start of autumn semester 2024. When the course opened,
pointers from the course contents of the base modules had
already been in place, linking the topics of PROG and PM
with sustainability topics. We also added a short introduction
to sustainability in the Moodle courses of the base modules.

When students follow one of the links to Sustainable Bytes,
they are asked to enroll in the course once. This can be done
easily by clicking an enrollment hyperlink. We decided to not
automatically enroll all students of the base modules to obtain
a better picture of the students’ interest in our course.

To further advertise Sustainable Bytes, the first author of
this paper visited all parallel instances of the PROG course after

one third of the semester and gave a short pitch of Sustainable
Bytes to encourage students to participate.

A. Usage Statistics

The Moodle platform provides us with detailed usage statis-
tics for the course: at the end of the first semester, 54 (out of
204) first-year students registered for the Sustainable Bytes
course on Moodle, which corresponds to 26 % of all first-year
students. Out of these 54 students, 16 students started the first
quiz, 5 students completed it. All 6 quizzes were completed
by 4 students (7 % of the students who registered). The forum
was not used by the students.

B. Survey and Results

In the last week of the semester, we sent an invitation to a
survey to all participants of the base modules to inquire about
their motivation for our course. The students were not given
time to respond to the survey during class hours. Instead, they
needed to respond in their own time. Therefore, we kept the
survey short and added an early exit for those students who
did not register with the Sustainable Bytes course. In total, 26
students responded to our survey.

The first two questions concern the pointers that were added
to the courses of the base modules. 23 students (88 %) noticed
the links from the base modules to Sustainable Bytes, whereas
3 (12 %) did not. Out of those who did notice them, 9 students
(39 %) followed them, whereas 14 (61 %) did not.

We asked those participants who noticed the links, but did
not follow them, for their reasons. Students were allowed to
enter multiple reasons. 12 students responded that they did not
have time for voluntary content. Four students responded that
the benefits of Sustainable Bytes were unclear to them. No stu-
dents responded that they were not interested in sustainability
in general. Two responses in the “Other” category were “At
the beginning I planned to do it, but in the end, I really didn’t
have the time” and “Due to my previous knowledge, I wasn’t
very interested.” These results are shown in Table II.

TABLE I
REASONS FOR NOT ENROLLING IN THE COURSE

Reason Number of responses
The benefits are unclear 4
No time for voluntary content 12

Not interested in sustainability
Other 2

We asked those participants who did enroll in Sustainable
Bytes about their main takeaways. To this end, we provided
four statements from which they could select all they deemed
applicable. We also provided a 5" answer (“Other”), which
allowed students to enter additional information. 6 students
answered that they learned “which aspects of software engi-
neering have an impact on the sustainability of software”. 5
students said that they learned “how to analyze and improve
a software engineering process with regard to sustainability.”



2 students each learned that “sustainability is not just about
energy consumption, but encompasses 5 dimensions” and that
“sustainability has three different levels of effect (“orders of
effect”).” These results are summarized in Table III.

TABLE III
MAIN TAKEAWAYS OF THE STUDENTS

Takeaway # of responses
Sustainability is not just about energy con- 2
sumption, but encompasses 5 dimensions
Sustainability has three different levels of 2
effect (“orders of effect”)

Which aspects of software engineering have 6
an impact on the sustainability of software

How to analyze and improve a software 5
engineering process with regard to sustain-

ability

Other 0

We then asked a few general questions about the setup of the
course. The results of these questions are shown in Table IV.
From these results, we gain valuable insights:

1) Whereas most of our compulsory courses (such as PROG
and PM) are taught in German, our course is in English.
This was not an issue for the students. Also, most students
appreciate that the course material is implemented as a
dedicated course on Moodle. As a result, we will continue
this course in English, which allows us to open the
course for other universities in other countries or language
regions of Switzerland.

2) The students need a stronger motivation for completing
the course, e.g., in the form of points being awarded for
the grades in the base modules. This is understandable
because their curriculum is already tightly packed with
activities required for obtaining a degree.

3) Only 22 % of the students felt motivated by their teachers
to attend the course. This can be attributed to the facts
that a) we did not give a thorough introduction to the
course to our colleagues and b) the teachers putting their
focus on the exam-relevant educational material.

We need to further investigate the results for the statement “/
read through the content, but didn’t have the time/motivation
for the quizzes.” According to the responses, not having time
or motivation for the quizzes was not an issue, which seems
contradictory to our other observations.

We gave the participants of the survey the opportunity to
enter feedback as free text at the end of the survey. Six
participants responded. Some comments emphasize aspects
that were covered by the questions before (integration of the
course contents in the base modules, awards points/credits,
complicated structure of the course). Two comments empha-
size the importance of sustainability as a topic, and they praise
that we offer a course on it. One comment criticizes that there
is too much text in our course and suggests loosening up the
course by using other media such as video. One comment
criticizes the graphical quality of the virtual badges.

C. Threats to Validity

In conducting our survey, two potential threats to validity
were identified.

a) External validity: One potential threat is sample rep-
resentativeness. Although we invited all first-year students
to the survey, we cannot exclude that most of the survey
participants are those students who showed an interest in sus-
tainability and our course. Since our survey was anonymous,
we cannot correlate the data.

b) Statistical Validity: Due to the low participation in our
survey, the sample size is not large enough to draw conclusions
for the entire cohort of students.

VI. LESSONS LEARNED

In this section, we present our lessons learned based on the
results of the usage statistics and the responses to our survey.

A. Use a bigger carrot

Students must be economical with their time. With a de-
manding schedule, we need to increase the motivation of our
students further by embedding Sustainable Bytes more deeply
into the curriculum.

The biggest motivator would be granting ECTS credits for
the course. However, this would require replacing an existing
mandatory module from the curriculum, which is currently not
possible. There are two alternatives. 1) We could include the
course in the students’ transcripts of records, even if no ECTS
credits are granted. 2) The students could earn points for this
course that will contribute to their grade in a base module. In
some base modules, this is already done today by awarding
points for successfully completing practical assignments.

While developing this course, we discussed with several
colleagues of other departments at our university. In these
discussions, we have learned that one department requires its
students to discuss sustainability aspects in their bachelor the-
ses. We could follow this model and make it mandatory for our
students to address one or more dimensions of sustainability
in their bachelor theses. The Sustainable Bytes course can then
be offered as introduction and inspiration.

B. Teach the teachers

The low participation rate teaches us that for a voluntary
course such as ours to receive wider attention, we need to
advertise its value better. This is challenging because the
concept of sustainability is not yet widely established in the
software engineering community. We believe that an important
step is to establish a notion of importance and urgency for
sustainability among the educators at our university. If most of
our educators emphasize the importance of the topic, students
will be more inclined to attend the course.

By teaching the teachers, we can also achieve that more
lecturers discuss sustainability aspects in their courses. This
would allow us to spread the effort for reaching our first goal,
creating sustainability awareness in all our computer science
students, across many courses throughout the study program.



TABLE IV
OTHER FEEDBACK ON THE COURSE

I would have used the course more if it had been offered in German.

I would have used the course more if I had received points for the base modules.

I find the course well structured.
The contents of the course do not go far/deep enough for me.

The teachers motivated me to use the Moodle of the course.

I read through the content, but didn’t have the time/motivation for the quizzes.

The content on sustainability should not be in a separate Moodle course, but

directly in the Moodle courses of the base modules.

| Very important 5 Important

Moderately important

88% 0%

1% DN 504
11% - 67%
33% 11%
56% - 22%
99% - 0%

33% - 55%

Slightly important Il Not important at all

Note: The number on the left of each bar chart is the sum of the percentages for the categories “Slightly important”
and “Not important at all”. The number on the right is the sum for “Very important” and “Important”, analogously.

C. Make the course more fun

Our survey has shown that while the contents of the course
are considered attractive by our students, its visual represen-
tation is not. The long text sections in the Moodle course
should be broken up with exciting images and videos. Also,
the virtual badges were considered as not looking valuable.
Having them redesigned by a professional designer could
increase the motivation of some students to win the badges.

To make the course more attractive, we envision to enhance
it with practical assignments as suggest by Peters et al. [31].
This will show the practical relevance of the educational
material to the students and give them more ways to interact
with the course.

VII. RELATED WORK

This section discusses related work on the intersection of
sustainability topics and computer science education, then
widen towards education in general, and finally complement
with industry-inspired views and findings.

A. Sustainability in Computer Science Education

The need to integrate sustainability into CS curricula was
identified as early as 2010. Mann et al. [3] highlight barriers
to this integration and propose the CE4s framework to help
educators. Our approach addresses two barriers not covered
by CE4s: “(1) limited knowledge of sustainability [...] among
computing educators, (2) the belief that computing may not
significantly impact social and/or environmental sustainabil-

LU

ity.

Penzenstadler et al. [32] propose a three-stage approach:
a seminar, a lecture series, and integrating sustainability into
software engineering lectures. Our approach covers the third
phase.

Torre et al. [33] report that sustainability in curricula
often focuses on energy efficiency, neglecting other dimen-
sions. They recommend raising awareness among educators,
including sustainability in all software engineering courses,
and involving students in creating teaching materials. Our
approach follows these recommendations by providing digital

teaching materials and incorporating sustainability into first-
year programming lectures.

Swacha et al. [34] use game-based learning to teach sus-
tainability in computer science. They developed Eco JSity, a
game where students solve programming puzzles to prevent
pollution. Our work focuses on spreading awareness of the
relationship between software engineering and sustainability,
and adds gamification aspects in the form of quizzes and
virtual badges. Using a game-based learning approach is an
interesting option for the future, but would require a tight
integration into our base modules.

Saraiva et al. [4] emphasize the importance of incorporating
environmental aspects into the CS curriculum. They suggest
introducing green thinking early and often. Our approach
introduces sustainability concepts in mandatory first-year BSc
modules and deepens these topics in elective third-year mod-
ules.

Eriksson et al. [35] explore using eco-anxiety to teach sus-
tainability. They integrated a research project on emotions into
an introductory course on sustainability and ICT, concluding
that emotions are crucial in sustainability education. They
provide eight suggestions for educators. While we have not
yet addressed these suggestions in our course material, we are
considering integrating them in order to increase the students’
motivation for our course.

Oyedeji et al. [17] investigate students’ perspectives on
the Sustainability Awareness Framework (SusAF [10]) in two
master’s courses. Surveys conducted before and after introduc-
ing SusAF show that students’ knowledge of sustainability
expanded beyond the environmental dimension. SusAF is
confirmed as an effective guide, which motivated us to base
our course on its sustainability concepts.

Peters et al. [31] conduct a literature review on sustainability
in computing education. They distinguish between incremental
and transformative approaches. Our approach is incremental,
adding content to existing courses. The report suggests fo-
cusing on topic-specific and cross-cutting competencies and
gaining awareness, with practical experience as a potential
enhancement.



Summary and gap analysis: Our Sustainable Bytes approach
is aligned with the aim of many scholars to enhance CS
education and in particular the SE track with sustainability
topics. The concept is unique by combining the broad view
on sustainability with the targeted access from SE lectures.
As our results show, participation need to be increased and
options exist in the form of gamification and emotions.

B. Sustainability in Other Fields of Education

We have also found relevant work on sustainability educa-
tion in other disciplines than computer science.

Azapagic et al. [36] surveyed engineering students’ sus-
tainability knowledge in 2005, finding it limited to the envi-
ronmental dimension and “not satisfactory.” They suggest an
integrated approach to teaching sustainable development and
redesigned their university’s engineering curriculum accord-
ingly. While we have chosen an integrated approach, we have
not yet managed to change our university’s curriculum.

Morris et al. [37] emphasize the importance of comple-
menting engineering courses with design courses to enhance
students’ self-reflection and critical analysis, particularly in
sustainable design. Students are encouraged to assess their de-
sign choices considering environmental, social, and economic
impacts. For CS students, design is a common activity in
software engineering. Therefore, our course links the software
and system design elements in the base modules to the relevant
sections of our course.

Yarime et al. [38] advocate for collaboration between aca-
demic and private stakeholders across disciplines to estab-
lish sustainability science, including education. Our approach
could benefit from partnerships with data center operators
or software engineering companies. In the future, our course
could be complemented with relevant case studies from such
partnerships.

Leifler et al. [39] report on an interdisciplinary approach
combining sustainability education with ethics and scientific
writing in a master’s course. A survey showed students
adopted a broader view of sustainability and recognized its
relevance to their careers. We are currently evaluating how we
could integrate such an approach in our course. Scientific writ-
ing and communication skills are already taught at bachelor’s
level at our university, but adding sustainability would require
replacing an existing topic.

O’Neill et al. [40] describe incorporating sustainability into
existing courses by shifting assignments from a technology-
centered to a community-centered view, addressing real-world
problems. Their results indicate that students apply their
sustainability knowledge in decision-making after attending
these courses. This is difficult to achieve in our base modules
because they take place in the first year of studies where
tackling real-world problems would exceed the skills of most
students.

Summary and gap analysis: While we lack a deeper in-
tegration into our university’s curriculum, Sustainable Bytes
is a portable concept and can be reimplemented in similar
ways in many educational institutions. The link to industry

needs and viewpoints remains a critical gap especially in
applied sciences education that is measured by its utility in
workforce education. Video clips and other interactive links
to industry could fix this issue while increasing attractiveness
of the material.

C. Industry Needs

Several studies highlight the software engineering industry’s
recognition of the need for sustainability awareness, knowl-
edge, and practices, which are currently lacking. This under-
scores the importance of educating future software engineers
on sustainability.

Heldal et al. [5] explore the industry’s perspective on
sustainability education for software engineers. Their findings
indicate a need for technical personnel to acquire sustainability
knowledge through in-house or external training and collab-
orations. They provide a comprehensive list of topics for CS
curricula, including core sustainability concepts and system
thinking, which our work addresses. Future course versions
should cover the remaining topics.

Karita et al. conducted a survey among software engi-
neering professionals in 97 companies [6], [7], revealing
low sustainability knowledge, except for technical aspects
like performance and maintainability. The survey participants
acknowledged the benefits of sustainable practices for both
their companies and society, highlighting the need for CS
graduates to have solid sustainability knowledge.

Wabhler et al. [1] report on a sustainability assessment of an
industry partner’s software engineering process. They found
a lack of sustainability awareness and knowledge, leading the
partner to integrate sustainability into their engineering princi-
ples and values, update use case templates, plan sustainability
training for employees, and conduct regular sustainability
assessments.

David proposes SusDevOps [41] as framework to embed
sustainability into software delivery. It hooks into the mon-
itoring phase of DevOps, aligns the monitoring results with
sustainability goals and KPIs, and prioritises them before
entering the replanning. However, SusDevOps has not been
validated yet in industrial practice, and techniques to teach
the framework to students are not yet documented.

Summary and gap analysis: Industrial recognition of sus-
tainability is becoming mainstream. With initiatives such as
the Green Software Foundation, digital souvereignty propos-
als like EuroStack and increasing transparency of workplace
conditions and stress levels for software engineers, many di-
rections exist but few can be taught to students in a condensed
form. Selecting and mapping emerging industrial standards to
Sustainable Bytes along with impactful examples becomes an
important housekeeping duty to sustain our approach and to
make students want to take the course from the beginning to
the end.

VIII. CONCLUSIONS

We have presented Sustainable Bytes, a novel online course
on sustainability in computer science that is linked with the



contents of mandatory first-year modules of our bachelor’s
program in computer science. The course covers different di-
mensions of sustainability and provides means for the students
to self-assess their learning progress. We have set ourselves
three goals for our course. We missed Goal 1, creating
sustainability awareness in all our computer science students.
As shown, only 26 % of first-year students registered to our
course. On the other hand, we have created sustainability
awareness in up to 26 % of our first-year students. Also, we
have learned important lessons (see Section VI), which should
help us to reach more participation in future iterations.

We achieved Goal 2, providing educational material on
sustainable software and software engineering. As shown,
students can find the pointers to our course in the teaching
material of the base modules, and they positively assess the
structure and contents of our course. We have created a
Moodle course that can be used and extended for many years.

We achieved Goal 3, enabling our students to assess their
own knowledge of the course material. We have added quizzes
for our students to self-assess their knowledge. From the usage
statistics, we can see that students can find the quizzes and can
solve them.

Despite missing the first goal, our course evaluation showed
that the contents of the course are valuable. Also, we have
learned important lessons how we might improve the course
and motivate more students to learn about sustainability in the
future.

A. Future Work

We are planning to continuously improve the course and
its integration into the computer science curriculum of our
university according to our lessons learned. As a first step,
we want to spread sustainability awareness among our fellow
lecturers as outlined in Section VI-B. This activity could be
started with a half-day workshop moderated by the authors
and supported by the materials in our course.

We seek for collaboration with lecturers at other universities
to share teaching materials and experiences. Since our course
material is in English, it can be easily reused for a wide range
of students.

An online course such as ours might also be useful in
an industrial context. As companies also face sustainability
challenges [5], there is a growing need to educate practitioners
as well. We are convinced that with some adaptations, the con-
tents of our course are also relevant for experienced software
engineering professionals. To this end, the course material
should be extended with topics that are currently not covered
in our base modules such as the implications of the choice of
programming language (we only introduce Java), architectural
frameworks and libraries (we use only basic frameworks such
as JavaFX), or performance metrics such as latency (we teach
them in other modules). Also, the references from our course
to our curriculum (see Figure 2) need to be replaced with
references to common software engineering practices such as
requirements engineering or software testing.

The use of generative Al in software engineering has several
strong effects on sustainability, which can be both positive
(e.g., less repetitive tasks, quick “peer” feedback) and negative
(e.g., increased energy usage, possible violations of intellectual
property). This is currently a very active field of research. We
plan to harvest the research results and augment our course
with considerations on Al-supported software engineering.

ACKNOWLEDGMENT

We thank our fellow lecturers who supported our work with
feedback and promoting the need for sustainability knowledge
to their classes: Patrick Feisthammel, Christof Marti, Marion
Miirner, Arjan Mooij, and Marcela Ruiz.

We thank the reviewers for their detailed feedback and clear
intent to improve the paper.

Microsoft Copilot was used to enhance the language of
some sections of this paper. The suggestions provided by
Copilot were critically reviewed and incorporated by the
authors.

REFERENCES

[1] M. Wahler, N. Seyff, and M. S. Soriano Ramirez, “Exploring assessment
criteria for sustainable software engineering processes,” in Proceedings
of the 46th International Conference on Software Engineering: Software
Engineering in Society, ser. ICSE-SEIS’24. New York, NY, USA:
Association for Computing Machinery, 2024, p. 107-117. [Online].
Available: https://doi.org/10.1145/3639475.3640109

[2] A. C. Moises de Souza, “Social sustainability approaches for
a sustainable software product,” SIGSOFT Softw. Eng. Notes,
vol. 48, no. 1, p. 38-43, Jan. 2023. [Online]. Available: https:
//doi.org/10.1145/3573074.3573085

[3] S. Mann, L. Muller, J. Davis, C. Roda, and A. Young, “Computing
and sustainability: evaluating resources for educators,” ACM SIGCSE
Bulletin, vol. 41, no. 4, pp. 144-155, 2010.

[4] J. de Sousa Saraiva, Z. Zong, and R. Pereira, “Bringing green software
to computer science curriculum: Perspectives from researchers and
educators,” Proceedings of the 26th ACM Conference on Innovation
and Technology in Computer Science Education V. 1, 2021. [Online].
Available: https://api.semanticscholar.org/CorpusID:235474009

[5] R. Heldal, N.-T. Nguyen, A. Moreira, P. Lago, L. Duboc, S. Betz,
V. C. Coroamd, B. Penzenstadler, J. Porras, R. Capilla, I. Brooks,
S. Oyedeji, and C. C. Venters, “Sustainability competencies and
skills in software engineering: An industry perspective,” J. Syst.
Softw., vol. 211, p. 111978, 2023. [Online]. Available: https:
//api.semanticscholar.org/CorpusID:258427108

[6] L. Karita, B. C. Mourdo, and I. do Carmo Machado, “Software
industry awareness on green and sustainable software engineering:
a state-of-the-practice survey,” Proceedings of the XXXIII Brazilian
Symposium on Software Engineering, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:202728886

[71 L. Karita, B. C. Mourdo, L. A. Martins, L. R. Soares, and
I. do Carmo Machado, “Software industry awareness on sustainable
software engineering: a Brazilian perspective,” J. Softw. Eng.
Res. Dev., vol. 9, pp. 2:1-2:15, 2021. [Online]. Available: https:
/fapi.semanticscholar.org/CorpusID:234753303

[8] A.N. Kumar, R. K. Raj, S. G. Aly, M. D. Anderson, B. A. Becker, R. L.
Blumenthal, E. Eaton, S. L. Epstein, M. Goldweber, P. Jalote, D. Lea,
M. Oudshoorn, M. Pias, S. Reiser, C. Servin, R. Simha, T. Winters, and
Q. Xiang, Computer Science Curricula 2023. New York, NY, USA:
Association for Computing Machinery, 2024.

[91 M. Vitali, P. Schmiedmayer, and V. Bootz, “Enriching cloud-native
applications with sustainability features,” in IEEE International
Conference on Cloud Engineering, IC2E 2023, Boston, MA, USA,
September 25-29, 2023. 1EEE, 2023, pp. 21-31. [Online]. Available:
https://doi.org/10.1109/IC2E59103.2023.00011


https://doi.org/10.1145/3639475.3640109
https://doi.org/10.1145/3573074.3573085
https://doi.org/10.1145/3573074.3573085
https://api.semanticscholar.org/CorpusID:235474009
https://api.semanticscholar.org/CorpusID:258427108
https://api.semanticscholar.org/CorpusID:258427108
https://api.semanticscholar.org/CorpusID:202728886
https://api.semanticscholar.org/CorpusID:234753303
https://api.semanticscholar.org/CorpusID:234753303
https://doi.org/10.1109/IC2E59103.2023.00011

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Duboc, B. Penzenstadler, J. Porras, S. Akinli Kocak, S. Betz,
R. Chitchyan, O. Leifler, N. Seyff, and C. C. Venters, “Requirements
engineering for sustainability: an awareness framework for designing
software systems for a better tomorrow,” Requirements Engineering,
vol. 25, no. 4, pp. 469-492, 2020.

D. o. E. United Nations and S. A. S. Development, “Transforming our
world: the 2030 agenda for sustainable development,” p. 16301, 2015.
[Online]. Available: https://sdgs.un.org/2030agenda

M. Freed, S. Bielinska, C. Buckley, A. Coptu, M. Yilmaz, R. Messnarz,
and P. M. Clarke, “An investigation of green software engineering,” in
Systems, Software and Services Process Improvement - 30th European
Conference, EuroSPI 2023, Grenoble, France, August 30 - September
1, 2023, Proceedings, Part I, ser. Communications in Computer
and Information Science, M. Yilmaz, P. M. Clarke, A. Riel, and
R. Messnarz, Eds., vol. 1890. Springer, 2023, pp. 124-137. [Online].
Available: https://doi.org/10.1007/978-3-031-42307-9_10

S. Forti, J. Soldani, and A. Brogi, “Carbon-aware software services,’
in Service-Oriented and Cloud Computing - 11th IFIP WG 6.12
European Conference, ESOCC 2025, Bolzano, Italy, February 20-
21, 2025, Proceedings, ser. Lecture Notes in Computer Science,
C. Pahl, A. Janes, T. Cerny, V. Lenarduzzi, and M. Esposito,
Eds., vol. 15547. Springer, 2025, pp. 65-80. [Online]. Available:
https://doi.org/10.1007/978-3-031-84617-5_6

H. E. Jadi, M. Vitali, and S. Andolina, “Balancing environmental
sustainability and user experience: Preliminary insights from green
search engines,” in Proceedings of the 2024 International Conference on
Advanced Visual Interfaces, AVI 2024, Arenzano, Genoa, Italy, June 3-7,
2024, C. Conati, G. Volpe, and I. Torre, Eds. ACM, 2024, pp. 89:1-
89:3. [Online]. Available: https://doi.org/10.1145/3656650.3656742

K. Geissdoerfer and M. Zimmerling, “Riotee: An open-source hardware
and software platform for the battery-free Internet of Things,” in
Proceedings of the 22nd ACM Conference on Embedded Networked
Sensor Systems, SenSys 2024, Hangzhou, China, November 4-7, 2024,
J. Liu, Y. Shu, J. Chen, Y. He, and R. Tan, Eds. ACM, 2024, pp.
198-210. [Online]. Available: https://doi.org/10.1145/3666025.3699332
W. C. on Environment and Development, Our Common Future, ser.
Oxford paperbacks. Oxford University Press, 1987.

S. Oyedeji, M. O. Adisa, L. Abdullai, and J. Porras, “Application of
sustainability awareness framework in software engineering courses:
Perspectives from ICT students.” in ICT4S (Doctoral Symposium, De-
mos, Posters), 2023, pp. 122-133.

J. Biggs and C. Tang, Teaching For Quality Learning At University,
ser. SRHE and Open University Press Imprint. McGraw-Hill
Education, 2011. [Online]. Available: https://books.google.ch/books?
id=XhjRBrDAESkC

L. M. Hilty, P. Arnfalk, L. Erdmann, J. Goodman, M. Lehmann,
and P. A. Wiger, “The relevance of information and communication
technologies for environmental sustainability — a prospective simulation
study,” Environmental Modelling & Software, vol. 21, no. 11, pp.
1618-1629, 2006, environmental Informatics. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1364815206001204
S. Freire, N. Rios, B. Perez, C. Castellanos, D. Correal, R. Ramac,
V. Mandié¢, N. TauSan, A. Pacheco, G. Lopez et al., “Pitfalls and
solutions for technical debt management in agile software projects,”
IEEE Software, vol. 38, no. 6, pp. 4249, 2021.

H. G. Koller, “Effects of clean code on understandability: An experiment
and analysis,” Master’s thesis, University of Oslo, 2016.

S. Rapps and E. J. Weyuker, “Selecting software test data using data
flow information,” IEEE transactions on software engineering, vol. 4,
pp. 367-375, 1985.

P. S. Fong, “Knowledge creation in multidisciplinary project teams: an
empirical study of the processes and their dynamic interrelationships,”
International journal of project management, vol. 21, no. 7, pp. 479—
486, 2003.

S. Naumann, E. Kern, M. Dick, and T. Johann, “Sustainable software
engineering: Process and quality models, life cycle, and social aspects,”
in ICT Innovations for Sustainability. Springer, 2015, pp. 191-205.

I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the

[26]

[27]

(28]

[29]

[30]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

36th International Conference on Software Engineering, 2014, pp. 503—
514.

S. Ryan and R. V. O’Connor, “Acquiring and sharing tacit knowledge
in software development teams: An empirical study,” Information and

Software Technology, vol. 55, no. 9, pp. 1614-1624, 2013.
L. Thgger Christensen, “Corporate communication: The challenge of

transparency,” Corporate communications: an international journal,
vol. 7, no. 3, pp. 162-168, 2002.

D. Bertram, A. Voida, S. Greenberg, and R. Walker, “Communication,
collaboration, and bugs: The social nature of issue tracking in software
engineering,” in Proc. ACM Conf. Comput. Support. Coop. Work, 2010.
C. Venters, L. Lau, M. Griffiths, V. Holmes, R. Ward, C. Jay, C. Dibs-
dale, and J. Xu, “The blind men and the elephant: Towards an empirical
evaluation framework for software sustainability,” Journal of Open
Research Software, vol. 2, no. 1, pp. 1-6, 2014.

C. Becker, R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler,
N. Seyft, and C. C. Venters, “Sustainability design and software: The
Karlskrona manifesto,” in 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, vol. 2. 1EEE, 2015, pp. 467—
476.

A.-K. Peters, R. Capilla, V. C. Coroamd, R. Heldal, P. Lago, O. Leifler,
A. Moreira, J. P. Fernandes, B. Penzenstadler, J. Porras et al., “Sustain-
ability in computing education: A systematic literature review,” ACM
Transactions on Computing Education, vol. 24, no. 1, pp. 1-53, 2024.
B. Penzenstadler and A. Fleischmann, “Teach sustainability in software
engineering?” 2011 24th IEEE-CS Conference on Software Engineering
Education and Training (CSEE&T), pp. 454-458, 2011. [Online].
Available: https://api.semanticscholar.org/CorpusID:1063570

D. Torre, G. Procaccianti, D. Fucci, S. Lutovac, and G. Scanniello, “On
the presence of green and sustainable software engineering in higher
education curricula,” 2017 IEEE/ACM 1Ist International Workshop on
Software Engineering Curricula for Millennials (SECM), pp. 54—
60, 2017. [Online]. Available: https://api.semanticscholar.org/CorpusID:
2696454

J. Swacha, R. Maskelitinas, R. Damavsevivcius, A. Kulikajevas,
T. Blavzauskas, K. Muszyniska, A. Miluniec, and M. K. Kowalska,
“Introducing sustainable development topics into computer science
education: Design and evaluation of the eco jsity game,” Sustainability,
vol. 13, p. 4244, 2021. [Online]. Available: https://api.semanticscholar.
org/CorpusID:234884697

E. Eriksson, A.-K. Peters, D. Pargman, B. Hedin, M. Laurell-Thorslund,
and S. Sjoo, “Addressing students’ eco-anxiety when teaching sustain-
ability in higher education,” in 2022 International Conference on ICT
for Sustainability (ICT4S). 1EEE, 2022, pp. 88-98.

A. Azapagic, S. Perdan, and D. Shallcross, “How much do engineering
students know about sustainable development? the findings of an interna-
tional survey and possible implications for the engineering curriculum,”
European journal of engineering education, vol. 30, no. 1, pp. 1-19,
2005.

R. Morris, P. Childs, and T. Hamilton, “Sustainability by design:
a reflection on the suitability of pedagogic practice in design and
engineering courses in the teaching of sustainable design,” European
Journal of Engineering Education, vol. 32, no. 2, pp. 135-142, 2007.

M. Yarime, G. Trencher, T. Mino, R. W. Scholz, L. Olsson, B. Ness,
N. Frantzeskaki, and J. Rotmans, “Establishing sustainability science
in higher education institutions: towards an integration of academic
development, institutionalization, and stakeholder collaborations,” Sus-
tainability Science, vol. 7, pp. 101-113, 2012.

O. Leifler, L. Lindblom, M. Svensson, M. Gramfilt, and A. Jonsson,
“Teaching sustainability, ethics and scientific writing: An integrated
approach,” 2020 IEEE Frontiers in Education Conference (FIE), pp. 1—
9, 2020. [Online]. Available: https://api.semanticscholar.org/CorpusID:
227126016

I. O’Neill and M. M. Gui, “Changing focus: making sustainability a
major theme in existing university modules,” Discover Sustainability,
2024. [Online]. Available: https://api.semanticscholar.org/CorpusID:
272332096

I. David, “Susdevops: Promoting sustainability to a first principle in
software delivery,” 2025. [Online]. Available: https://arxiv.org/abs/2312.
14843


https://sdgs.un.org/2030agenda
https://doi.org/10.1007/978-3-031-42307-9_10
https://doi.org/10.1007/978-3-031-84617-5_6
https://doi.org/10.1145/3656650.3656742
https://doi.org/10.1145/3666025.3699332
https://books.google.ch/books?id=XhjRBrDAESkC
https://books.google.ch/books?id=XhjRBrDAESkC
https://www.sciencedirect.com/science/article/pii/S1364815206001204
https://api.semanticscholar.org/CorpusID:1063570
https://api.semanticscholar.org/CorpusID:2696454
https://api.semanticscholar.org/CorpusID:2696454
https://api.semanticscholar.org/CorpusID:234884697
https://api.semanticscholar.org/CorpusID:234884697
https://api.semanticscholar.org/CorpusID:227126016
https://api.semanticscholar.org/CorpusID:227126016
https://api.semanticscholar.org/CorpusID:272332096
https://api.semanticscholar.org/CorpusID:272332096
https://arxiv.org/abs/2312.14843
https://arxiv.org/abs/2312.14843

