

Novel Use of Biomaterials in a Clinical Setting: One Surgeon's Journey from the Clinic to the Laboratory and Back Again

George J Dias

Department of Anatomy, School of Medical Sciences, University of Otago, New Zealand.



# Resorbable keratin-based biopolymer as a bone substitute material

#### George J Dias

#### Department of Anatomy, School of Medical Sciences, University of Otago, New Zealand.



AgResearch Christchurch, New Zealand



Department of Anatomy, School of Medical Sciences University of Otago



Aotearoa **New Zealand** (NZ)

Pop: 4.1 million people ...

#### • ... and 38.5 million sheep



- 2007 Agricultural Production Census, Statistics New Zealand
- NZ is the 3rd largest (17%) global wool producer (after Australia and China), and 2<sup>nd</sup> largest exporter (after Australia)

#### • Intact keratin proteins



From: Strelkov SV, et. al. 2000

#### Keratin protein fractions



#### Reversible protection of cystine crosslinks

$$W-S-S-R + SO_3^{2-}$$
  $W-S-SO_3^{-} + R-S^{-}$ 

#### Electrophoresis





SDS 1D

SDS 2D

### Biopolymer materials



Bone graft Bone fixation Incorporation of other materials, eg: HA

## **Biopolymer materials**





# Membranes, coatings, fibrous assemblies

## **Biopolymer materials**



Soluble powder Gel forming liquid Hydrogels

# Keratin hydrogel







### Control of porous structure



#### Leaching of porogens

#### Control of porous structure



## Keratin HA pore structure

|                                            | KERATIN HA | CANCELLOUS<br>BONE* |
|--------------------------------------------|------------|---------------------|
| % density                                  | 29         | 20-25               |
| Cell size / intertrabecular<br>spaces (µm) | 100-500    | 200-500             |

\* Schenk, Biology of Fracture Repair

## In Vivo Histomorphological Results





#### Collagen implant 3 weeks



# Porous keratin-4%HA implant 3 weeks



Porous keratin-4%HA implant 8 weeks



#### Porous keratin-4%HA implant 12 weeks



#### Dense keratin implant 12 weeks

### Keratin HA/ Week 4/ Micro-CT



#### Osteoinduction



- KP/HA/BM 21 days sub-muscularly in Lewis rats
- Some cells show tendency towards osteoblastic differentiation & widespread osteoid may have formed with increased implantation times.

#### CONFIDENTIAL

#### Osteoinduction



• KP/HA/BM 21 days sub-muscularly in Lewis rats

## Week 1 (VG)







#### Keratin/HA

## Week 2 (VG)





#### Collagen

#### Keratin-40%HA

## Trial 3: Keratin/HA Week 4 VG (x4)



### Trial 3: Keratin/HA Week 4 VG (x40)



## Trial 3: Keratin/HA Week 4 VG (x40)



## Trial 3: Keratin/HA Week 8 VG (x10)



## Unique Properties of Keratin/HA

- Scaffold for cells and protein binding
- Calcifiable, biodegradable matrix
- Biocompatible
- Non-antigenic
- Stimulates osteoconduction, osteogenesis, and possibly osteoinduction

#### Patents

- Kelly, R.J., and Roddick-Lanzilotta, A.D. (Wool Research Organisation of New Zealand) and Dias, G.J., and Peplow, P.V. (University of Otago) Orthopaedic materials derived from keratin. No. PCT/NZ03/00116, International patent No. 537602 (2004)
- United States patent "Orthopaedic materials derived from keratin", US 7,297,342, Peplow P.V., Dias G.J., Roddick-Lanzilotta, A.D., Kelly, R.J. issued in November 2007.

- Dias, G. J., Mahoney, P., Swain, M., Kelly, R. J., Smith, R.A., Mohammad, A.A. Keratin-Hydroxyapatite Composites: Biocompatibility, Osseointegration, and Physical Properties in an Ovine Model. *Journal of Biomedical Materials Research Part A*, **95A**: 1084-1095, 2010.
- Dias, G. J., Peplow, P. V., McLaughlin, A., Teixeira, F., & Kelly, R. J. (2010). Biocompatibility and osseointegration of reconstituted keratin in an ovine model. *Journal of Biomedical Materials Research Part A*, **92A**: (2), 513-520.
- Peplow, P. V., Dias, G. J., Teixeira, F., & Kelly, R. J. (2009) Tissue reaction to matrices of reconstituted keratin polymer implanted subcutaneously in sheep. *Journal of Biomedical Materials Research Part A*, 89A: (1), 255-265.
- Peplow P. V. and Dias G. J. A study of the relationship between mass and physical strength of keratin bars in vivo. *Journal of Materials Science: Materials in Medicine*, 2004; 15:1217-1229

### Novel hybrid resorbable sutures

- A novel processing method was established to produce dairy protein based bioabsorbable hybrid medical suture, which retain positive biological properties of dairy proteins.
- The methods involved in processing are simple and similar to melt extrusion fibre manufacturing.
- This processing methodology uses moderate mixing temperature without any chemical agents, hence will not affect the physiological or biological benefits of proteins.
- The hybrid suture demonstrated **unique** characteristics of surface and matrix morphologies.



#### **Suture diameters**

- The manufacturing process can produce variable suture diameters.
- Approximately30-50µm diameter of mono-filament suture was produced for this investigation.
- Processing methodology demonstrated that this meltextrusion process can also be applied to produce multifilament sutures.



#### **Mechanical performance of sutures**

- Hybrid sutures (DP01 & DP02) comprising desirable proportions of dairy proteins exhibited good mechanical properties similar to the control (PCL based biodegradable suture) in dry and wet conditions.
- Tensile strength (in dry & wet conditions) results demonstrated that the hybrid suture having suitable mechanical characteristics that is desirable in a medical suture.



#### Tensile Strength (Dry and Wet)

#### In vitro/in vivo results

- The tensile strength (TS) and knot strength (KS) of hybrid sutures in particular DP02 suture remained almost unchanged after *in vivo* subcutaneous implantation (in rats) for 14 days. In contrast, these properties of the control suture (PCL based commercial) decreased with time.
- Significant drop in KS of PCL suture which may be of concern in clinical applications.
- Hybrid sutures constantly retained TS and KS (DP02 suture) during subcutaneous *in vivo* implantation at the different time-points. These results indicate that hybrid sutures possibly integrating with skin tissues leading to enhancement of TS & KS *in vivo* at 14 days.



## In vitro/in vivo results

- The hybrid sutures demonstrated biocompatibility and satisfactory keratinocyte (skin cell) proliferation, comparable to PCL.
- The following skin closure *in vivo* investigation was based on these results.



#### SKIN/WOUND CLOSING STUDY IN VIVO









#### SKIN/WOUND CLOSING STUDY IN VIVO

- Skin/wound closing study was conducted in the Lewis rat.
- The wound strengths were approximately 30% greater at the 2 experimental suture wound closing sites compared to the PCL control at 7 days.
- This important finding illustrates that the hybrid suture comprising dairy protein are fully bioabsobable and enhances wound healing leading to significant increase in wound strength compared to PCL based suture.
- The skin healing/closing results of hybrid sutures *in-vitro* and *in-vivo* (animal model) studies reveal that sutures comprising dairy protein demonstrating remarkable skin wound healing/closing performance.



#### SKIN/WOUND CLOSING STUDY IN VIVO

Material A

Material B

| 549.95 μm <sup>2</sup> / μm | 578.29 μm <sup>2</sup> / μm                                                                | 661.68 μm <sup>2</sup> / μm                                                                    |
|-----------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
|                             |                                                                                            |                                                                                                |
| 1249.04 μm²/ μm             | 722.26 μm <sup>2</sup> / μm                                                                | 422.47 μm <sup>2</sup> / μm                                                                    |
|                             |                                                                                            |                                                                                                |
| 665.97 μm <sup>2</sup> / μm | 510.76 μm <sup>2</sup> / μm                                                                | 496.92 μm <sup>2</sup> / μm                                                                    |
|                             |                                                                                            |                                                                                                |
|                             | 549.95 μm <sup>2</sup> / μm<br>1249.04 μm <sup>2</sup> / μm<br>665.97 μm <sup>2</sup> / μm | 549.95 μm²/ μm 578.29 μm²/ μm   1249.04 μm²/ μm 722.26 μm²/ μm   665.97 μm²/ μm 510.76 μm²/ μm |

Control





#### Competitive Advantages with our technology

- The current medical sutures (both resorbable and non-resorbable) in the market provide mechanical support to lesions in tissues. These do not claim any physiological and biological benefits.
- The hybrid sutures produced by incorporating dairy protein based biomaterials into biocompatible polymer demonstrate **significantly improved healing performance and tissue-integration, with desirable mechanical properties**. These balanced attributes demonstrates significant potential for creating new generation of medical sutures.
- However, suture production process may require further improvement to achieve higher mechanical properties, and to fuse needle onto the suture (eye-less needle).
- Further small and large animal trials are also required prior to pre-clinical trials.
- While exact manufacturing cost is unknown at this stage; it is envisaged that the cost would be approximately 10% higher than the current PCL based sutures.

## Acknowledgements

Funding: Otago Research Grants (3) Otago/AgResearch Grant Keratec Ltd (New Zealand) Keraplast Technologies Ltd (USA)

- Collaborators:
- Dr. Rob Kelly
- Dr. Azam Ali
- Dr. Fernanda Teixeira
- Dr. Phi Peplow
- Dr. Robert A. Smith
- Prof. Michael Swain
- Prof. WM Tilakaratne

Postdoctoral Fellows: Dr. Alexis PietaK Dr. Patricia Mahoney

Postgraduate Students: Andrew McLaughlin Laura Neilson