

SoGoS Centre for Society, Governance and Science

Facts, Myths, and Misunderstandings: New discoveries on function and age-related morphology in human spinal muscles

Jon Cornwall

Dip.Phty, BSc(Physiol.), PGCertTertT, DMPhty(Manipulative Phty), MSc(Anat.), PhD(Anat.).

Centre for Society, Governance and Science (SOGoS), Faculty of Law, and Department of Anatomy, University of Otago

Background

Physiotherapy 1991 BSc (Physiology) 1992 DMPhty (Manip. Phty) 1995 MSc (Anatomy) 2003 PhD (Anatomy) 2008 PGCertTertT (Teaching) 2011

Founder / owner of PhysioMed physiotherapy clinics, 1995 – 2002

Senior Research Fellow, Faculty of Law and Department of Anatomy, University of Otago

Editor Australasian Medical Journal

Boards: Programme Autopsy for Rare Cancer; Society for Death Studies NZ

- 1. Spinal muscle function
- 2. Human tissue use is science, education

Background

Physiotherapy 1991 BSc (Physiology) 1992 DMPhty (Manip. Phty) 1995 MSc (Anatomy) 2003 PhD (Anatomy) 2008 PGCertTertT (Teaching) 2011

Founder / owner of PhysioMed physiotherapy clinics, 1995 – 2002

Senior Research Fellow, Faculty of Law and Department of Anatomy, University of Otago

Editor Australasian Medical Journal

Boards: Programme Autopsy for Rare Cancer; Society for Death Studies NZ

- 1. Spinal muscle function
- 2. Human tissue use is science, education

Dunedin and Otago Peninsula

Ironman NZ

NZ Cycling Team

Seminar outline

- Functional morphology of the spinal muscles
- 1. Morphology
- 2. Fibre type
- 3. Spatial Distribution
- 4. Age related changes and cell death

http://travelblogadvice.com/travelhttp://www.swinggizmo.com/ blogging/selecting-smart-breaks-from-travel- http://www.flickr.com/photos/mp3monster/2305466419/

http://english.cri.cn/8046/2011/02/14/2743s620520.htm

Te Kaporeihana Āwhina Hunga Whara

http://news.bbc.co.uk/sport2/hi/rugby_union/my_club/ng_dragons/7775694.stm http://www.healthcentreofmilton.ca/workrelatedinjuries.html http://edn.org.nz/about-us/governance-structure/our-founding-members/1 http://blogreedgroup.wordpress.com/2010/06/22/workplace-injury-of-the-week-lumbar-sprains-strains/

• What is 'functional morphology'? Identification of elements that improve our understanding of muscle function

Attachment points Shape Density of proprioceptors Size / cross section Fibre type Fibre architecture

- What is 'functional morphology'? Identification of elements that improve our understanding of muscle function
- Why investigate functional morphology?
- Form guides function
- Knowledge of functional role important Guide and inform diagnosis, therapy

Functional morphology of the TSP* muscles

* TSP - transversospinal

Functional morphology TSP muscles

Background

- Deepest, most medial spinal muscles
- Suggested role in spinal pathologies (through EMG, biopsy, ultrasound, MRI findings)
- Knowledge on morphology required for diagnosis, treatment

TSP muscle location

Functional morphology TSP muscles

Background

Problems with existing knowledge:

- Thoracic and lumbar regions morphologically similar yet described as dissimilar
- Thoracic: 4 different muscles
 Lumbar: 1 muscle
- Description of 'superficial' and 'deep' lumbar multifidus (EMG) (Moseley et al. 2002)

TSP morphology – modern textbook consensus

Functional morphology TSP muscles

Aim

Investigate functional morphology of thoracolumbar TSP muscles to clarify form, elucidate function in order to guide diagnosis, therapy and intervention

TSP morphology – modern textbook consensus

Gross morphology

Methods

- Microdissection using magnification (surgical microscope)
- 8 sides (different cadavers, 64-89 years, 4 male) from T6 – sacrum
- Each muscle and attachments identified, removed (400 muscles)
- 4 dissected cranial to caudal; 4 caudal to cranial

Gross morphology

Results

- Attachment between adjacent muscles
- Lack of clearly delineated epimysium
- Contradicts current textbook descriptions of 'individual muscle'

Epimysium – encloses muscle

http://www.teachpe.com/anatomy/structure_skeletal_muscle.php

Lateral view of dissected thoracic TSP muscles

Cornwall, Stringer, Duxson Spine 2011

Gross morphology

Results

- Organisation / pattern same throughout thoracic / lumbar regions
- Thoracic semispinalis extends to L4 (not previously described)
- Each vertebral level 'blended' with adjacent levels
- Few cleavage planes

Lateral view single muscle 'sheet' removed from T7

Cornwall, Stringer, Duxson Spine 2011

Functional morphology TSP muscles

Discussion

- Homogeneous arrangement
- No distinct / consistent cleavage planes
- Muscles 'blended' together from each level of origin (no distinct sheath of epimysium)
- Fibre arrangement: all in-parallel and multipennate
- Arrangement suggests 'fine tuning' function

Lateral view single muscle 'sheet' removed from T7

Functional morphology TSP muscles

Conclusion

- Anatomical texts could be reviewed:
- muscles all the same form / different names
- thoracic semispinalis
- definition of individual muscles (and epaxial)
- Medical intervention: precise injection of neuromuscular junctions, electrical stimulation difficult
- Diagnosis: accurate EMG, biopsies, muscle cross-section (MRI, US) difficult

SPINE Volume 36, Number 16, pp E1053-E1061 @2011, Lippincott Williams & Wilkim

ANATOMY

Functional Morphology of the Thoracolumbar Transversospinal Muscles

Jon Conwall, PhD, DMPhty, Mark D. Stringer, MS, FRCS, and Marilyn Duxson, PhD

Background

- Examination of anterior cervical muscles (ACM):
 Longus colli
 Longus capitis
 Scaleni (anterior, medius, posterior)
- Function altered in various conditions: chronic cervical pain, whiplash, anterocollis, acute calcific tendonitis, scalenectomy

- Current physical therapy targets anterior cervical muscle 'postural retraining' with exercise regimens; inconsistent outcomes
- Limited understanding of ACM function as few studies assess fibre types
- Skeletal muscle, fibre types help determine function.
 Type I fibres: aerobic, tonic
 - Type II fibres: anaerobic, phasic

Aim: Quantify ACM fibre types to improve understanding of function

Methods

- Muscles from 5 cadavers (average age 87; 4 male) sampled at multiple vertebral levels (total 106 sections)
 6 Longus colli, Longus capitis
 5 Scalenus anterior, medius, posterior
- Tissue blocks paraffin embedded
- 5µm sections immunohistochemically stained for type I (1A), type II (MY32) skeletal muscle fibres

Processed section of anterior cervical muscle; type II – dark, type I - light

Methods

Methods

Methods

 Stereology (random systematic sampling of whole section):

a) fibre type proportions (total numbers, counting minimum 4% total section area)

b) cross-sectional area (CSA) occupied by each fibre type

Muscle section: 5 orange fibers, 3 green

Larger area occupied by orange

Methods

Data analysed by ANOVA

- Within each muscle:
 Between each specimen
 Between vertebral levels
- Between different muscles

Methods

Data analysed by ANOVA

- Within each muscle:
 Between each specimen
 Between vertebral levels
- Between different muscles

Methods

Data analysed by ANOVA

- Within each muscle:
 Between each specimen
 Between vertebral levels
- Between different muscles

Results

- 69,572 fibres counted to assess proportions (650 / slide)
- 556 counted per section to assess cross-sectional area

Within each muscle – ANOVA (post-hoc Sidak):

- No significant difference proportion of fibre types between or within most specimens; 2 longus capitis specimen differed from other specimens
- No significant difference CSA occupied by type I between or within most specimens; 1 longus capitis specimen differed from other specimens

Results: Between different muscles - raw data:

Muscle of	Proportion type I fibres by t	Area occupied ype I fibres
Longus colli	48.8%	63.5%
Longus capitis	53.9%	63.3%
Scalenus anterior	73.9%	84.9%
Scalenus medius	64.8%	78.1%
Scalenus posterior	57.2%	75.1%

Muscle	L.capitis	L.colli	Sc.ant	Sc.med
L.colli				
Sc.ant	*	*		
Sc.med	*	*		
Sc.post				

Between different muscles – ANOVA (post-hoc Sidak) Significant differences in proportion of type I fibres

* denotes significant difference (p>0.05)

Muscle	L.capitis	L.colli	Sc.ant	Sc.med
L.colli				
Sc.ant	*	*		
Sc.med	*	*		
Sc.post	*	*		

Between different muscles – ANOVA (post-hoc Sidak) Significant differences in percentage of CSA occupied by type I fibres

* denotes significant difference (p>0.05)

- Longus colli / capitis similar to phasic muscles (e.g. hamstrings, 65% type I)
- Scaleni more highly aerobic, similar to other postural muscles (e.g. lumbar multifidus, 85-95% type I)
- Significant differences CSA / proportion type I longus capitis specimens: perhaps indicates more type II atrophy

Conclusion

- First study assessing whole ACM sections, from multiple levels
- Challenges views all ACM 'postural' (elderly); scaleni more 'postural', other muscles more 'phasic'
- Individual ACM likely to have different roles
- Treatment regimens targeting postural 'function' for all ACM should be re-examined

Background

 Section from previous work showed three interesting fibre type distribution

Blue - 'Normal' random distribution of type I and II fibres

Green – type I fibres increased

Red – type II fibres increased

Multifidus muscle (whole section T2)

Background

 Non-random distributions were noted in anterior cervical muscle sections from fibre type investigations (elderly samples)

'Normal' random distribution

Dogma – increased type I fibres

Type II aggregation

Type II aggregation

Fibre type distributions, cervical muscles

Background

- Understanding spatial distribution important
- Age-related changes
- Physiology, force distribution

Aim: Assess cervical muscle fibre type spatial distributions

'Normal' random distribution

Dogma – increased type I fibres

Type II aggregation

Type II aggregation

Fibre type distributions, cervical muscles

Methods

- Assessing 96 pre-processed sections from 5 muscles (previous investigation), whole section
- Anterior cervical muscles, 5 cadavers
- Aggregation = clusters of >10 type II fibres

Type II fibre aggregation

Cornwall and Sheard Clinical Anatomy 2012 (Abstract)

Fibre type spatial distribution

Results

Muscle	Sections clustering / total sections	% sections with clustering	
Longus colli	16/18	89	
Longus capitus	17 / 27	63	
Scalenus anterior	5/11	45	
Scalenus medius	15 / 28	54	
Scalenus posterior	8/12	67	

Type II fibre aggregation

Cornwall and Sheard Clinical Anatomy 2012 (Abstract)

Fibre type spatial distribution

Conclusion

- Challenges sarcopenia dogma on increasing, uniform type I proportion and aggregation
- Normal process / distribution?
- No readily available quantitative method to examine type I, type II spatial relationships

Cornwall and Sheard Clinical Anatomy 2012 (Abstract)

Background

- Observations on fibre type distributions suggested difference to 'normal' / expected (non-random)
- No method available for testing distributions statistically
- Aim: Develop mathematical method for assessing spatial distribution

Davies, Cornwall, Sheard Statistics in Medicine 2013

A 'Random'

B

Type II

aggregation

Fibre type distributions, cervical muscles

Type II aggregation

Methods

- Generate point data from photomicrograph pre-processed sections (x3) (Fovea Pro)
- Import data to R-stats programme
- Determine parameters for testing
- Create algorithm to interpret and test data

Davies, Cornwall, Sheard Statistics in Medicine 2013

Result

Analysis includes -

Light and dark fibres

$$\hat{\rho}(y) = \log\left[\frac{\hat{f}_{\mathrm{D}}(y)}{\hat{f}_{\mathrm{L}}(y)}\right]; \quad y \in W,$$

Kernel smoothing

$$\hat{f}_{\alpha}(y) = n_{\alpha}^{-1} \sum_{x \in X} \mathbf{1}[m(x) = \alpha] \frac{K_b(y - x)}{c_b(W, y)w_{\alpha}(x)}$$

1 1

Weighting

$$w_{\alpha}(x) = \frac{|x|}{\sum_{z \in X} \mathbf{1}[m(z) = \alpha]|z|}$$

Davies, Cornwall, Sheard Statistics in Medicine 2013

Result

Kernel smoothed distributions of three samples

Significance testing of three samples; red line indicates difference to 'random' distribution

Davies, Cornwall, Sheard Statistics in Medicine 2013

Discussion

- First method to quantitatively assess and significance test two different fibre populations in samples (Kernel density, random Markov binary field methods most appropriate)
- Development of novel bio-mathematical application
- Application to not only muscle fibre types; other biological distributions

Tilman M. Davies, ** † Jon Cornwall^b and Philip W. Sheard^c

Formation of Otago Muscle Biology Group

A/P Phil Sheard Department of Physiology

A/P David Rowlands Massey University, Wellington

Dr Tania Slatter Department of Pathology

Navneet Lal

John Brady

Kathrine Neilsen

Ash Gillon

Cross-section of mouse soleus muscle stained with dystrophin

Sarcopenia:
<u>1. Loss of fibres</u>
2. Loss of fibre size (atrophy)
3. Aggregation of fibres

Navneet Lal

Dystrophin encircled vacuoles & invaginations with intracellular localisation

Anti-Dystrophin

Scale bar = 100 µm

Mouse skeletal muscle

Navneet Lal

Position of DEVILs within mouse Soleus and EDL Sarcopenia:

Loss of fibres

Loss of fibre size (atrophy) Aggregation of fibres

Navneet Lal

Position of DEVILs within mouse Soleus and EDL

MF30: Pan MHC	AG19 : Pan MHC	F59 : Avian fast	My32: Pan Fast
B1: MHCIIa & MHCIIb	LM5: MHCIIa & MHCIIb	NOQ 7.5.2B : MHCIIa & MHCIIx	A4.74: MHClla
MF14: MHCIIb	558 : Slow and embryonic	546 : Slow muscle spindles and EOMs	ALD19: MHCβ (slow cardiac) slow muscle spindles and intrafusal fibres
NOQ 7.5.IA: MHCI	ALD58: MHCI with 3 grades	Negative	

Functional morphology of the spinal muscles

Summary

- Studies have investigated form and function of TSP, anterior cervical muscles
- Data informs function useful for diagnosis, intervention
- Investigations now focused on determining how age related change occurs (molecular pathways)

So what?

'Facts, myths, and misunderstandings'

- There is no 'one' anatomy textbook that is correct about everything
- Muscle form and function are important yet sometimes poorly understood
- Aging effects all of our skeletal muscle; still little is known about biological mechanisms

Thank you

Otago University Clocktower

Funded by:

Ministry of Business, Innovation & Employment