

Special Course (SpC) on MSE Moodle Platform

Title: Computational science and engineering applied to intelligent energy buildings

Abbrev: DMBEM

Credits	3	
Responsible UAS	ZHAW	
Responsible MRU	IEFE	
Course responsible	Frank Tillenkamp: till@zhaw.ch, Christian Ghiaus: christian.ghiaus@insa-lyon.fr	
Examination	33.3% Written 2h, w/o documents on 26/11/202133.3% Written report of group work due on 26/11/202133.3% Oral presentation of group work on 26/11/2021	
Face to face period	25/10/2021 09:00 – 29/10/2021 18:00 Note: the course may be physical or distant face-to-face, depending on the sanitary requirements. In both situations, the contents and the requirements are the same.	
End date (exam)	26/11/2021	
Location	ZHAW, Winterthur	
Course type	Face to face lectures and tutorials (25/10/2020 – 27/10/2020)	20h (22%)
	Accompanied exercises and mini-project (27/10/2021 – 29/10/2021) Autonomous group project	20h (22%)
	(02/11/2021 – 24/11/2021)	50h (56%)
	Total	90h (100%)
Language	English	
Short Content (max. 300 chars)	Buildings are responsible for about 40 % of energy consumption and CO2 emissions. The course develops computational skills for modelling and problem solving of coupled heat transfer with special applications to optimize energy consumption for indoor climate control.	
Content and Goals	 Face to face Lecture module 1 thermal transfer phenomena: conduction, convection and radiation 	
	Lecture module 2 continuous and discrete models 	

Special Course (SpC) on MSE Moodle Platform

	 thermal networks transforming the thermal networks into state-space and transfer functions coupling the models
	 Tutorial 1: Read weather data and calculate solar radiation: 1) introduction to linear algebra and tools (MATLAB, Octave); 2) use MATLAB/Octave for reading (weather) data 3) calculating the solar load
	 Tutorial 2: Simple wall 1) physical analysis and mathematical models 2) discretization of mathematical models 3) numerical stability 4) implementation
	 Tutorial 3: Simple building in free-running: controlled natural ventilation 1) physical analysis and mathematical models 2) discussion of examples 3) implementation
	 Tutorial 4: Simple building controlled by an HVAC system 1) physical analysis and mathematical models 2) discussion of examples 3) implementation
	Accompanied individual mini-project: Intelligent control of a single zone building
	Autonomous group project: Students define their own subject on indoor climate control: - dynamic insulation - dynamic solar protection - control of floor-heating and fan coils - influence of set-point setback - control of intermittently heated buildings
Pre-requisites	Required (undergraduate level): linear algebra, calculus, heat transfer, thermodynamics, computer programming. Desirable (but not compulsory): dynamic systems, control
	engineering

Special Course (SpC) on MSE Moodle Platform

	The course is self-contained: all teaching materials are provided as PDF (bibliography, supporting materials and slides for lectures and tutorials).	
Literature	 Bibliography G. Strang (2007) Computational Science and Engineering, Wellesley-Cambridge Press, ISBN-10 0-9614088-1-2 J.A. Clarke (2001) Energy Simulation in Building Design, 2nd edition, Butterworth Heinemann, ISBN 0 7506 5082 6 C. Ghiaus (2013) Causality issue in the heat balance method for calculating the design heating and cooling load, Energy, vol. 50, pp. 292-301 MATLAB / Octave tutorials (Learn with MATLAB and Simulink Tutorials, www.mathowirks.com and/or Octave Programming Tutorial, en.wikibooks.org 	
Special requirements	 Before the beginning of the course: Every student needs to have access to MATLAB, and/or Octave software. Octave software is free and open source; it can be installed on Windows, macOS and Linux operating systems. Teaching materials need to be downloaded and saved on each computer before the first lecture. 	