Standard Redundancy Methods for Highly Available Automation Networks

rationales behind the upcoming IEC 62439 standard

Hubert Kirrmann
ABB Switzerland Ltd,
Corporate Research
The good thing about “Industrial Ethernet” standards is that there are so many to choose from (IEC 61784) - you can even make your own.

It remains to be proved that the new networks are more reliable than the field busses that they are supposed to replace.

However, customers require the new technology to be “at least as dependable as the one it replaces”

But few “Industrial Ethernets” care about redundancy.

This talk shows what must be looked at when considering automation network redundancy and which solutions IEC 62439 proposes.
1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Ethernet-based automation networks
5. Parallel (static) and serial (dynamic) redundancy
6. IEC 62439 solutions
7. Conclusion
Some terms

Availability applies to *repairable* systems

Availability is the fraction of time a system is in the “up” (capable of operation) state.

We consider systems in which availability is increased by introducing redundancy (availability could also be increased by better parts, maintenance)

Redundancy is any resource that would not be needed if there were no failures.

We consider automatic insertion of redundancy in case of failure (fault-tolerant systems) and automatic reinsertion after repair.
we must consider all transitions, not just what happens after a failure
Standard Redundancy in Industrial Ethernet

Classification of redundancy methods (1)

Dynamic redundancy (standby, serial)
- Input
- Output
- Error detection (also of idle parts)
- Trusted elements

Paradigm: spare tire

Static redundancy (workby, parallel, massive)
- Input
- Output
- Fail-silent unit
- Trusted elements

Paradigm: double tires in trucks
<table>
<thead>
<tr>
<th>Dynamic (standby, serial) redundancy</th>
<th>Static (parallel, workby) redundancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Redundancy is not actively participating in the control. A switchover logic decides to insert redundancy and put it to work</td>
<td>Redundancy is participating in the control, the plant chooses the working unit it trusts.</td>
</tr>
<tr>
<td>This allows to:</td>
<td>This allows to:</td>
</tr>
<tr>
<td>+ share redundancy and load</td>
<td>+ provide bumpless switchover</td>
</tr>
<tr>
<td>+ implement partial redundancy</td>
<td>+ continuously exercise redundancy and increase fault detection coverage</td>
</tr>
<tr>
<td>+ reduce the failure rate of redundancy</td>
<td>+ provide fail-safe behavior</td>
</tr>
<tr>
<td>+ reduce common mode of errors</td>
<td>- but costs total duplication</td>
</tr>
</tbody>
</table>

-buts witchover takes time
1. Terms: availability and redundancy

2. Classification of requirements

3. Levels of device and network redundancy

4. Industrial Ethernet topologies

5. Industrial Ethernet stack and redundancy

6. IEC 62439 solutions

7. Conclusion
Requirements of fault-tolerant systems

degree of redundancy (full, partial duplication)
 “Hamming Distance”: minimum number of components that must fail to stop service

guaranteed behavior when failing
 fail-silent or not

switchover delay
 duration of loss of service in case of failure

reintegration delay
 duration of disruption to restore redundancy after repair (live insertion)

repair strategy
 365/24 operation, scheduled maintenance, daily stops,…

supervision
 detection and report of intermittent failures (e.g. health counters).
 supervision of the redundancy (against lurking errors)

consequences of failure
 partial / total system loss, graceful degradation, fault isolation

economic costs of redundancy
 additional resources, mean time between repairs, mean time between system failure

factors depending on environment
 (failure rate, repair rate) are not considered here.
Switchover time and grace time

The switchover delay is the most constraining factor in fault-tolerant systems.

The switchover delay is dictated by the **grace time**, i.e. the time that the plant allows for recovery before taking emergency actions (e.g. emergency shut-down, fall-back mode).

E.g. Recovery time after a communication failure must be shorter than the grace time to pass unnoticed by the application.

The grace time classifies applications:

- **Uncritical** < 10 s (not real time)
 - Enterprise Resource Planning, Manufacturing Execution

- **Automation general:** < 1 s (soft real-time)
 - human interface, SCADA, building automation, thermal

- **Benign** < 100 ms (real-time)
 - process & manufacturing industry, power plants,

- **Critical:** < 10 ms (hard real time)
 - synchronized drives, robot control, substations, X-by-wire
Grace time depends on the plant (typical figures)

- Cement: 10s
- Chemical: 1s
- Printing: 20 ms

- Tilting train: 100 ms
- X-by wire: 10 ms
- Substations: 5 ms
1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Industrial Ethernet topologies
5. Industrial Ethernet stack and redundancy
6. IEC 62439 solutions
7. Conclusion
We consider networks for automation systems, consisting of nodes, switches and links.
1) No redundancy (except fail-silent logic)

2) Redundancy in the network: protects against network component failures
3) Doubly attached nodes protects in addition against network adapter failures

4) Redundant, singly attached nodes protect against node or network failures
5) Doubly attached nodes and network crossover protect against node and network failure.

Crossover redundancy allows to overcome double failures (device and network).

However, use of crossover must be cautious, since crossover relies on elements that can represent single points of failure and should be very reliable to bring a benefit.

IEC SC65C addresses redundancy types 2 and 3 – redundancy types 4 and 5 can be built out of the 2 and 3 solutions.
Standard Redundancy in Industrial Ethernet

1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Industrial Ethernet topologies
5. Industrial Ethernet stack and redundancy
6. IEC 62439 solutions
7. Conclusion
Ethernet-based automation networks (tree topology)

in principle no redundancy
Ethernet-based automation networks (ring topology)

Standard Redundancy in Industrial Ethernet

- longer delays, but already has some redundancy
This topology is becoming popular since it suppresses the (costly) switches and allows a simple linear cabling scheme, while giving devices a redundant connection.

Operation is nevertheless serial redundancy, i.e. requires a certain time to change the routing.

Devices are doubly-attached, but do not operate in parallel.
Dynamic and static redundancy in networks

Dynamic

In case of failure, switches route the traffic over an other port – devices are singly attached.

Static

In case of failure the doubled attached nodes work with the remaining channel. Well-known in the fieldbus world.
1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Industrial Ethernet topologies
5. Industrial Ethernet stack and redundancy
6. IEC 62439 solutions
7. Conclusion
Most “Industrial Ethernet” uses the classical TCP-UDP-IP stack and in addition a layer 2 traffic for real-time data (but some use UDP) and a clock synchronization (IEEE 1588).

Therefore, Industrial Ethernet redundancy must operate at level 2.
The redundant Ethernet solutions distinguish themselves by:

- the OSI level at which switchover or selection is performed.

- whether they operate with dynamic or static redundancy

Industrial protocols operate both at network layer (IP) and at link layer (e.g. Real Time traffic, clock synchronization traffic),

Redundancy only at network level is not sufficient, it must be implemented at layer two to account for industrial Ethernets that use these layers.

Since standard methods handle effectively redundancy at the network layer (TCP/IP), network level redundancy is separated from the device-level redundancy.
Commercial solutions to redundancy in the nodes

(no duplication of nodes)

only redundancy within the network

1 Ethernet controller

2 MAC Addresses

1 MAC Addresses

2 IP Addresses

the level of redundancy can be identified by the addresses used
Methods for dynamic redundancy in networks

-IP protocol Layer 3 (network) 10s or more – unsuited for Industrial Ethernet

-RSTP (IEEE 802.1D) Layer 2 (switches): 1 s typical, less in fixed topography

-HyperRing Layer 3 (ring) 200 ms

-The switchover time of dynamic redundancy is limited by the detection time of the failure.

(or rather, by the interval at which the non-failure is checked, since failures can’t be relied upon to announce themselves).
1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Industrial Ethernet topologies
5. Industrial Ethernet stack and redundancy
6. IEC 62439 solutions
7. Conclusion
Rules of order of MT9

1) the standard redundancy solution is independent of the higher protocols used

2) the standard shall be compatible with existing equipment, especially commercial PCs and switches, where no redundancy is used

3) the standard shall define the layout rules and especially the integration of different levels of redundancy

4) the standard shall define means to supervise the redundancy, e.g. using SNMP

5) the standard shall define scenarios for life insertion and reintegration of repaired components

6) the standard shall define measurable performance goals, such as switchover times and reintegration time

7) if several solutions emerge, the standard shall specify their (distinct) application domains and recommendation for their use

MT9 shall not consider safety or security issues – for this there are other standards.
IEC 62439 solutions

MT9 decided to address requirements separately

A) general automation systems
 the standard recommends to use **RSTP**
 (base: IEEE standards, RSTP) – no need for a new standard < 500 ms

B) benign real-time systems that are cost-sensitive, grace time < 200 ms
 the standard shall define an adequate switch redundancy scheme
 and redundant devices attachment.
 (base: RSTP and further developments – solution: **MRP**

C) critical real-time systems that require higher coverage, grace time < 2 ms
 the standard shall define a parallel network solutions and redundant
device attachment.
 (base: ARINC AFDX and similar – solution **PRP**

D) legacy solution based on Fieldbus Foundation
Standard Redundancy in Industrial Ethernet

The Rapid Spanning Tree Protocol

Standardized by IEEE 802.1D (replaces the obsolete STP)

Spanning-tree-algorithm avoids loops and ensures redundancy
Standard Redundancy in Industrial Ethernet

RSTP performance

+: IEEE standard, field proven, large market, cheap

+: no impact on the end nodes (all end nodes are singly attached)

+: can be implemented in the nodes if the nodes contain a switch element

-: RSTP is in fame of being rather slow (some seconds switchover time). However, if the topology is fixed, RSTP switches can learn the topography and calculate alternate paths in case one should fail. Some manufacturers claim recovery delays <100 ms for selected configurations
Standard Redundancy in Industrial Ethernet

MRP (based on Siemens-Hirschmann hyperring)

intact ring

broken ring

the Medium Redundancy Master (MRM) controls the ring
the Medium Redundancy Clients (MRC) close the ring
The MRM checks the integrity of the ring by sending in both direction test frames.

These test frames are forwarded by all intact switches and inter-switch links.

If the MRM does not receive its own frames over its other interface, it closes the ring at its location, reestablishing traffic.

Supervision frames allows to locate the source of the trouble.

+: fast switchover (< 200ms worst case)

+: no impact on the nodes

+: no increase in network infrastructure.

-: MRP switches are not compatible with RSTP switches, limited market

-: limited to ring topology
Fieldbus Redundancy Protocol

- Standard Redundancy in Industrial Ethernet

Diagram showing the fieldbus redundancy protocol with local area networks (tree) A and B, trunk inter-LAN link, switch, branch port, trunk link, leaf link, end node, and local area network (tree) A and B.
The Fieldbus Redundancy Protocol is derived from the Fieldbus Foundation H3 network. It uses two separate networks, to which devices are attached through two network adapters. The networks are used alternatively rather than in parallel.

+: provides cross-redundancy (double fault network and node)

+: provides protection against adapter failures

-more than double network costs with respect to non-redundant networks

-large effort for building doubly-attached nodes.

-switchover time not specified
send on both lines: each frame is send on both A and B lines, frames over A and B have different transmission delays (or may not arrive at all)

receive on both lines: the stack receives both frames from both lines treated as equal, a "merge layer" between the link and the network layer suppresses duplicates.
Standard Redundancy in Industrial Ethernet

PRP layout examples

Party-Line topology

Star topology

Switches separately powered

Centralized wiring

Common mode failures cannot be excluded since wiring comes close together at each device
To ease duplicate rejection, PRP nodes append a sequence number to the frames along with a size field that allows to determine that the frame belongs to the PRP protocol. This trailer is invisible to the higher layers (considered as padding).

Receivers discard duplicates using a sliding drop window protocol.
+ PRP allows bumpless switchover, no frames are lost

+ During normal operation, PRP reduces the loss rate

+ PRP checks the presence of nodes by periodical supervision frames that also indicate which nodes participate in the protocol and which not

-: double network costs

-: doubly attached devices are costly to build

-: frame size must be limited to prevent frames from becoming longer than the IEEE 802.3 maximum size (but most switches and Ethernet controllers accept frames up to 1536 octets)
1. Terms: availability and redundancy
2. Classification of requirements
3. Levels of device and network redundancy
4. Industrial Ethernet topologies
5. Industrial Ethernet stack and redundancy
6. IEC 62439 solutions
7. Conclusion
IEC 62439 satisfies the needs of the Industrial Ethernets belonging to the IEC 61784 suite with three (four) solutions:

-RSTP is sufficient for many applications—with improvements for fixed configuration

-MRP: a ring-based protocol for demanding automation networks and singly attached nodes

-PRP: a parallel network protocol for critical applications requiring doubly attached nodes.

-FRP, especially in conjunction with Fieldbus Foundation, requiring doubly attached nodes.
Consider redundancy failure

- **up intact**
 - successful detection and repair
 - first failure (recovered)
 - successful repair
- **up impaired**
 - 2nd failure or unsuccessful repair
 - up
 - λ + λ_r
- **down**
 - 2nd failure or unsuccessful repair
 - plant recovery (not considered here)
 - ρ
- **up redundancy loss**
 - not recovered first failure
 - λ (1-c)

Mathematical expressions:
- \(\frac{\lambda c}{\mu} \)