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Abstract

This project was conducted by the Institue of Embedded Systems (InES) at Zurich Uni-
versity of Applied Sciences (ZHAW) in collaboration with Zurich Instruments AG (ZI) and
the Commission for Technology and Innovation. The aim was to implement a Ethernet based
time synchronization between multiple Etzel, which are advanced digital lock-in amplifiers
from ZI, and validate and verify the performance. The requested time synchronization accu-
racy is in the order of 10 ns.
PTP was determined to be the most suitable time synchronization protocol because of the
precision, the independence of other devices and the availability of an in-house PTP stack
implementation of the protocol. The feasibility of a time synchronization solution using PTP
was proven by evaluating multiple simulations and implementing the available stack on two
Apalis evaluation hardware boards. A concept was devised for integrating the time syn-
chronization functionality into existing Etzel devices and implemented with the help of ZI.
Testing was conducted on the underlying implementation on Apalis boards as well as on the
final system with multiple Etzels in order to verify the performance requirements.
During the implementation of the PTP stack, adjustments had to be made to the Ethernet
controller driver. The PTP stack was adapted to work on a Linux with 3.1 kernel and the
integrated interfaces for the PTP clock as well as the hardware timestamping. Hardware
limitations (routing of pins) led to two variants for pin assignment. The accuracy of the time
synchronization is dependent on environmental conditions and configuration of the PTP ap-
plication. Time synchronization measurements between two Etzels show a standard deviation
between the timestamp registers under best measurement conditions of 12.1 ns and a mean
value of -1.7 ns.
The performance of the system was found to satisfy the needs of Zurich Instruments under
the condition that the Ethernet connection is realized in a direct (Peer-to-Peer) manner or
via a PTP-capable switch.
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Chapter 1

Introduction

This chapter provides an overview of the project and states the required goals.

1.1 Overview

Current generation measurement and testing equipment most commonly provides the ability
to connect to a Local Area Network (LAN) for remote control and data retrieval purposes.
The recent development of thin clients, which spatially separate signal acquisition hardware
from the user interface, in conjunction with widely available LAN connectivity allow for cost-
effective decentralized measurement systems. Applications that are based on such equipment
include the production of solar panels, cell-analysis in microfluidic channels and impedance
spectroscopy in synchrotron particle accelerators (as displayed in figure 1.1).

PC

Impedance
Spectroscope 1

Impedance
Spectroscope 2

Impedance
Spectroscope 3

Sensor 1

Sensor 2

Sensor 3

Synchrotron

       LAN

Figure 1.1: Example application of a decentralized measurement system in a synchrotron

A fundamental requirement for all these applications is a common time base. Thus al-
lowing the identification of measurements that were taken at the same time but in different
locations. One of the core competencies of the Zurich University of Applied Sciences (ZHAW)
InES is time synchronization in the sub-microsecond range by means of the PTP[1]. A project

1



with the goal of developing a measurement device1 with time synchronization capabilities has
been conducted as part of a project cooperation between the InES and Zurich Instruments
AG (ZI), supported by the federal Swiss Commission for Technology and Innovation (CTI).
The specific task described by this report (being one of the last parts of the overall CTI
project) was to investigate the possibility of expanding the functionality of ZI’s impedance
spectroscopes by time synchronization abilities. Thus allowing them to be used in decentral-
ized measurement setups.
The expected deviation between multiple devices’ time bases is of the order of 10 ns. Fur-
thermore the existing hardware (microprocessor and network controller) shall be used while
communicating only via Ethernet over twisted-pair cables.
In order to achieve a sufficiently high degree of accuracy for the individual time bases, a
synchronization method has been implemented on specific hardware, based on the precision
time protocol. The main advantages of this technology are i) the usage of already existing
communication channels (therefore not requiring to install a separate synchronization wire)
and ii) the relatively high degree of accuracy amounting to 10-100 ns, depending on the en-
vironment. Depending on the success of this project, ZI will consider implementing the time
synchronization in Etzel.

The hardware of the Etzel does already exit. Its two main parts are the main board
(consisting of an analog part and a FPGA), which is responsible for the measurements, and
the processor board, precisely the Apalis T30. This hardware is given and shall not be
changed.

1.2 Goal

The scope of this report includes examination of different network based time synchronization
protocols. Moreover, concepts for the implementation of the time synchronization and the
integration into Etzel are developed. The implementation is tested in different project phases
in order to verify fulfillment of the required performance. The overall workflow of the project
is described in figure 1.2.

Measurement plan
Unit tests

Requirements from
Zurich Instruments

Determine 
measurement methods

TestingImplementation

Perform
measure-

ments

Requirements
achieved?

Implementation 
of software
(PTP-stack)

on development
Hardware

ZHAW InES

Include 'Time 
Synchronization'

feature in 
production 
hardware

Zurich 
Instruments

Determine 
necessary 

basic
conditions

Determine 
potential scenarios

Unit tests verify performance of software 
implementation on development hardware

Implementation of
PTP-stack into 
Etzel hardware.

(Synchronization 
of Etzel time 

with PTP time)

ZHAW InES

Measurement plan
System tests

Requirements from
Zurich Instruments

Determine 
measurement methods

Determine 
potential scenarios

Perform
measure-

ments

System tests validate functionality of time synchronization
on final hardware in targeted measurement setup

Legend: External

Figure 1.2: Project workflow

1The device by the name of ’Etzel’ is a Lock-In amplifier capable of measuring signals up to 50 MHz
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1.2.1 Implementation

The first goal is to choose a suitable network based time synchronization protocol for this
project and give a short overview. The requested time synchronization precision between two
Etzels is 10 ns.

The second goal of this project is to implement the chosen time synchronization on two
Apalis evaluation boards, which contain an Apalis T30 processor board. This implementation
will show the feasibility as well as the highest precision achievable.

The third goal is the integration of the time synchronization into Etzel. Therefore, a
concept shall be developed and proven by simulations. The integration itself is beyond the
scope of this project, since the knowledge and the source code are property of ZI.

1.2.2 Testing

In a first step, the requirements of ZI and their customers are listed. Based on these needs,
the initial goal is to determine means to quantify the performance provided by our solution
(the measurement concept).
Furthermore it is necessary to specify the scenarios according to which the device will be
employed (measurement setup). Measurements shall be conducted according to a predefined
measurement plan and their outcome assessed in order to judge the achievement of ZI’s de-
mands.

The integration of the previously developed time synchronization into ZI’s measurement
device is the next intermediate step with respect to testing. A second measurement phase
is performed in order to validate the correct integration of the functionality into the Etzel
device and finally to measure the performance of a complete system (consisting of multiple
measurement devices in a decentralized measurement environment).

In summary, the goals are to:

� Confirm that the requirements were achieved

� Determine the basic conditions (in respect to temperature, supply voltages, device com-
position, etc.) that are necessary to perform as expected.

With these results, the developed solution is ready to be included in production hardware by
ZI.
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Chapter 2

Implementation Concept

The aim of this chapter is to give an overview of different time protocols, introduce different
PTP stack implementations and propose concepts for the integration of the time synchro-
nization into Etzel of ZI.

2.1 Time Synchronization Protocols

Multiple devices have to be synchronized over LAN with a precision of 10 ns. Therefore, an
appropriate time synchronization protocol has to be chosen. This section provides a short
overview of existing and established protocols, such as NTP, the derived SNTP and PTP.

2.1.1 Network Time Protocol (NTP) and Simple Network Time Protocol
(SNTP)

NTP is a networking protocol for clock synchronization and is highly available since it is
commonly used in modern computers (more information about time synchronization proto-
cols can be found in [2]). The related user space daemon is called ntpd and is implemented
in most Unix systems in order to synchronize the system clock to a NTP server.

The Architecture is composed of different levels. Such a level is called Stratum. The very
highly accurate clocks, such as atomic or GPS clocks, are commonly located in the Stratum
0 and are connected by a RS-232 connection instead of a network. The ”time servers” are
located in the Stratum 1. They handle the NTP requests from the Stratum 2 servers. Theo-
retically, 256 Strata can be specified. However, in practice only the first 16 are used, where
Stratum 15 is already considered as unsynchronized.

The precision of NTP depends on the network. Synchronization accuracy is typically in
the range of 5 ms to 100 ms if synchronized on the internet and 100 µs up to several millisec-
onds on LAN.

SNTP is a small version NTP. The difference is that SNTP devices do not have to store
state information over a long period of time and thus need less memory resources. Because
of that, SNTP is commonly used in embedded systems, where resources are expensive.
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The time format of NTP and SNTP is Universal Time, Coordinated (UTC).

Conclusion

The big advantage of NTP and SNTP is the high availability. However, these two protocols are
not precise enough to fulfill the requirements of this project which is 10 ns. Moreover, there is
always the need for an NTP server, which can not be guaranteed for all applications, in which
the Etzel will be used. Therefore, neither NTP nor SNTP were chosen for the implementation.

2.1.2 Precision Time Protocol (PTP)

The PTP is a wide spread and well known time synchronization protocol. The first release
of PTP was in 2002 under the name IEEE 1588-2002 (PTPv1) [3]. In 2008, a second ver-
sion called IEEE 1588-2008 (PTPv2) [1] was released. Unfortunately, it is not possible to
directly synchronize two PTP devices using different versions since the PTP message format
has changed[4].
The time format of PTP is based on Temps Atomique International (TAI), which requires a
small calculation in order to get the corresponding time in UTC format.
For new projects, it is not recommended to use the PTPv1 since this is an obsolete standard.
Therefore, only the new version PTPv2 is described in more details in the following.

Precision of PTP

The precision of PTP depends on its implementation. A high resolution can be achieved by
timestamping outbound packages at the very last and an inbound at the very first moment,
preferably by hardware. The maximal possible resolution given by the PTP timestamp is 1
ns for PTPv1 and 2−16 ns (i.e. 15 femto seconds) for PTPv2. Note that these values are
absolute maximum ratings and are typically not reached because of the inaccuracy of the
implementations.

Best Master Clock (BMC)

PTP is basically a master-slave architecture. The master provides the clock to which all slaves
synchronize. If the master has an inaccurate clock, all the slaves will adapt the inaccuracy of
the master. Therefore, the best clock in the system is voted to be the master by the BMC
algorithm. This algorithm takes clock quality into account as well as priority settings.

Synchronization Mechanism

As soon as the master is defined, the slaves can start synchronizing. The whole synchroniza-
tion process is divided into two procedures.

The first procedure is called syntonization, which is responsible for adjusting the slave’s
clock in order to make it run at the exact same frequency as the master clock (see Figure
2.2). Therefore, so called Sync messages are continuously sent by the master.
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Figure 2.1: Distribution of time and frequency in PTP
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Figure 2.2: Principle of Syntonization

The Sync messages are then processed by the slaves. The calculation of the frequency
deviation requires the transmit timestamp and the receive timestamp. The master has two
options for sending the transmit timestamp to the slaves. One-step clocks insert the times-
tamp on-the-fly into the Sync message whereas two-step clocks send a Follow-up message
containing the transmit timestamp of the Sync message. The receive timestamp is produced
by the slaves themselves and therefore already available. With the knowledge of the sending
and the receiving time, the slaves are able to calculate the interval between two Sync messages
as well as the downlink delay using the following formulas:

Interval : tk+1
1 − tk1 = tk+1

2 − tk2
DownlinkDelay : tk+1

2 − tk+1
1 = tk2 − tk1

The second procedure is responsible for time synchronization. Until now, the clocks of
the master and the slaves would run at the same speed but likely with an offset in time, since
they were not started at exactly the time (see Figure 2.3). Therefore, the round trip time
between master and slave clock is measured. The downlink is already known from the Sync
message before and the uplink is measured with a Delay Request message sent by the slaves.
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The Delay Response is used to bring the receive timestamp of the Delay Request back to the
slaves.
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Figure 2.3: Clock adjustment mechanism

The uplink and downlink are assumed to be symmetric for the sake of simplicity. The
calculation of the one-way delay and the offset are therefore performed as follows:

Delay = (t2−t1)+(t4−t3)
2

Offset = (t2−t1)−(t4−t3)
2

Boundary Clock

A Boundary Clock (BC) is a bridge including a PTP clock, which is synchronized over its
slave port to a master clock, the so called grandmaster. On the other ports, the BC acts as
a PTP master clock to which PTP slaves can synchronize. The BC is a way to synchronize
PTPv1 to PTPv2 devices and vice versa, since each port represents a single segment with its
own PTP protocol.

Transparent Clock

The Transparent Clock (TC) is an Ethernet bridge which is capable of measuring the time
a PTP message spends in the bridge and adds this value on the fly to the correction field of
the PTP message. Since this residence time is relative, it is not necessary to synchronize the
TC. There are two different kinds of TC mode: End-to-End (E2E) and Peer-to-Peer (P2P).

In E2E mode, only the time spent in the TC is added to the correction field and the
message exchange works as described in section 2.1.2 (Synchronization Mechanism).

In P2P mode, not only the time spent in the TC is considered, but also the path delay.
Both values are added on the fly to the correction field in each TC (see Figure 2.4). The
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advantage is that it is not necessary to remeasure the delay if the path of the Sync packet
changes, e.g. if a connection breaks and packets have to be rerouted.
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Figure 2.4: E2E and P2P mechanism

The generally used mode is the E2E since a breakdown of a connection, which could lead
to the rerouting of the packages, occurs very rarely. Moreover, the used networks are typically
not built up in a ring topology and therefore a rerouting is not possible.

Conclusion

PTP is an established protocol for time synchronization. The accuracy is in the range of a few
nano or even pico seconds, which is exactly the required accuracy for this project. Moreover,
neither dedicated time server nor specialized hardware are required. For these reasons, PTP
was chosen for the implementation of this project.

2.2 PTP Stack

The aim of this section is to provide an overview of existing PTP stacks. Additionally, the
chosen in-house implementation is described in detail.

2.2.1 Choice of PTP Implementation

There are several existing PTP stacks available on the internet, e.g. Precision Time Protocol
Daemon (PTPD) and The Linux PTP Project [5]. Both of them are open source and available
for free. There are also other implementations available which have to be payed for.

For this project, none of the existing PTP stacks was chosen because an in-house imple-
mentation was already available providing the following advantages:
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� In-house know how and support

� Existing example implementations available

� Independence of third parties

� Quick response time on standard updates

2.2.2 Proprietary PTP Stack of InES

The PTP stack of InES depicted in Figure 2.5 basically consists of three layers, more precisely
two interfaces and a core layer. The abstraction layer separates the protocol engine from the
hardware or Operating System (OS) beneath. Functions are declared in header files which
are part of the independent layer whereas the implementations are in source files in the
abstraction layer.

InES
PTP Stack

1588 Protocol Engine

Port
Interface

TSU
Interface

Clock
Interface

PTP APILog
Interface

Human
Interface

API Layer OS/HW independent Layer OS/HW abstraction Layer

Figure 2.5: Overview of the PTP Stack implemented at InES

Interface Description

In the follwing, the interfaces of Figure 2.5 are described in more detail.

The PTP Application Programming Interface (API) is the interface between the user ap-
plication and the 1588 Protocol Engine, containing functions to read, write or modify values.
The protocol engine is started and stopped by API function calls and run by periodic timer
events pushed over the API.

The Log Interface is responsible for printing information either on the screen or into a
dedicated file.

The Port Interface is an OS specific implementation to send and receive PTP frames, e.g.
a multicast raw socket if Linux is used.
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The Time Stamp Unit (TSU) Interface is a hardware and an OS specific implementation
to receive timestamps generated by hardware, which are forwarded to the Protocol Engine.

The Clock Interface is a hardware and OS specific implementation to read and write time
and adjust the clock by setting the drift and offset.

The Human Interface is an optional application which processes user inputs from the
keyboard and displays desired information on the screen.

The GPS Interface is also optional. It is used to receive time over National Marine Elec-
tronics Association (NMEA) messages sent by a Global Positioning System (GPS) receiver.
Additionally, the PTP clock is adjusted according to the GPS time and the Pulse per Sec-
ond (PPS) signal from the GPS receiver is timestamped.

2.3 Integration into Etzel

The aim of ZI is to measure synchronously using two or more Etzel boards. The measurements
are processed and timestamped inside the FPGA on Etzel boards. However, the synchronized
PTP time is inside the Ethernet controller. This section proposes some implementation con-
cepts of the synchronization between the FPGA and the Ethernet controller.

Etzel consists of the processor board and a data acquisition part. The analog signal is
converted by the Analog Digital Converter (ADC) with a sampling rate of 60 MS/s (See
Figure 2.6). The samples are then handed to the FPGA, where they are downsampled to
approx. 469 kS/s by the demodulator, i.e. a downsampling factor of 128. Afterwards, each
sample is timestamped and forwarded to the user to be displayed.
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Figure 2.6: Overview of the Etzel board with the Apalis T30 processor board and the data
acquisition.

2.3.1 Basic Idea

The synchronization process is divided into two parts. Firstly, the PPS signal from the Eth-
ernet controller, which is routed to the FPGA (depicted in Figure 2.6), is used to update
the synchronization every second and thus give the timestamp unit of the FPGA the abil-
ity to precisely synchronize to the full seconds. Secondly, the information about the time is
missing. Therefore, the PTP application reads the time of the Ethernet controller and at the
beginning of every second, the timestamp is rounded up to the next second, representing the
time when the next PPS event1 occurs. This time is then forwarded to the FPGA via the ZI
application. The information about time and speed of the PTP clock enables the FPGA to
fully synchronize to the PTP clock of the Ethernet controller. This basic concept is applied
on Etzel in PTP master as well as slave mode, since the FPGA has to synchronize to the
PTP clock in both cases.

ZI requires that timestamps are always increasing and therefore two samples never have
the same timestamp. The timestamping interval is approximately 2 µs since the data from the
demodulator is downsampled to 469 kS/s. Thus, the accuracy of the synchronization must
always be better than ±1 µs in order not to violate the requirement. The final synchronization
accuracy shall be in the order of 10 ns.

1The PPS event is the rising edge on the PPS signal, which occurs at the transition of every second.
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2.3.2 Synchronization of the FPGA

Three different concepts were taken into consideration for the synchronization of the PTP
time of the Ethernet controller and the timestamp unit of the FPGA.

Simple Synchronization

The first idea is that the PPS signal from the Ethernet controller triggers a counter, which runs
at the clock frequency of the FPGA, representing the time in nanoseconds for the timestamp
unit (see Figure 2.7). After every second, the PPS signal clears the content of the counter and
restarts from value 0. The next second value for the timestamp is continuously received from
the processor board and buffered in the Preset register. Additionally, the PTP Sync. Enable
is set. The PPS signal triggers the update of the Timestamp register with the value from
the Preset. If no time is received, the PTP Sync. Enable is cleared and the carry from the
nanosecond counter is used to increment the second value of the timestamp. The Increment
Value, which is used for the nanoseconds counter, is constant for this implementation.

Timestamp

Timestamp

PPS

Time

Timestamp (Sec.)

Preset (Sec.) ns Counter

Increment Value

Reset

PTP Seconds

Clk 60 MHz

Update

Trigger

Carry Seconds

Nanoseconds

Enable

PTP Sync.
Enable

Reset

Overflow + Carry disable

FPGA Clock

Figure 2.7: Overview of the timestamp of the FPGA

The advantage of this implementation is its simplicity. However, counter value is expected
to deviate from the desired value. The offset from the deviation is getting worse during
one second because of the clock drift, resulting in a jump when synchronized to the next
second (see Figure 2.8). Moreover, if the FPGA clock is faster than the PTP clock, multiple
measurements with the same timestamp are possible, which violates the requirements from
ZI. The feasibility of this implementation directly depends on the precision of the crystal
oscillator.
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Figure 2.8: Offset with a slow (left) and fast (right) FPGA clock

The Simple Implementation is insufficient for the purposes of ZI since the step when syn-
chronizing to the PPS pulse may lead to wrong results, which is unacceptable. Additionally,
a 64 bit timestamp register with nanosecond resolution is already implemented and used by
hardware and software blocks from the existing application and thus can not be split up into
two timestamp registers.

Clock Sharing

The offset problem stems on the one hand from the fact that the clock of the Ethernet con-
troller runs at a different speed than the clock from the FPGA and on the other hand from
the jitter of the PPS signal. However, if the same clock is used for both components, the
offset is stable for one second and can then easily be corrected by the new time from the
Ethernet controller. Similar to the Simple Synchronization concept, the new time is fetched
once per second into the timestamp register by the PPS signal. Since the same clock is used,
there will be no drift and thus a very small correction after one second. The disadvantage is
the extra routing of the PTP clock on the PCB and the usage of an extra pin on the FPGA
as well as on the processor board.

Clock Sharing is also not the concept of choice because the precision of the PPS clock is
insufficient and would lead to an increased phase-noise in the measurements and thus ruin
the performance of Etzel.

Offset and Drift Correction

The aim of this concept is to correct the deviation of the PTP and the timestamp time of the
FPGA by adjusting the offset and the drift of the timestamp counter every second.
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Figure 2.9: Concept of the drift and offset correction

The first idea for correcting the drift is to adjust the Phase Locked Loop (PLL) of the
FPGA depicted in Figure 2.6. By doing so, the clock of the whole FPGA is affected and thus
the phase-noise of the measurements is increased by the jitter of the PTP synchronization,
which would again ruin the performance of Etzel. Additionally, the PLL is a simple clock
multiplier and does not support the generation of arbitrary frequencies. For this reasons, the
PLL in not suitable for the purposes of drift correction.

Since the PLL can not be reused, the drift and offset correction are implemented as logic
blocks in the FPGA (see Figure 2.9). Basically, the timestamp counter value is compared to
the PTP time after every second and the offset calculated. If the offset exceeds a threshold, the
PTP time is loaded into the timestamp counter on the next PPS event instead of correcting
the existing value. However, if the offset does not exceed the threshold, it is forwarded to
the timestamp counter. Beside the offset calculation, the drift of the timestamp counter is
determined by the drift calculation and also forwarded to the timestamp counter.

2.3.3 FPGA Implementation Concept

The main problems, which have to be tackled, are the different speed of the PTP and the
FPGA clock, the jitter from the PTP synchronization and the resulting offset of the two
clocks. Therefore, the concept with the offset and drift correction was chosen to be imple-
mented, because the other concepts were all insufficient. The drift correction takes care of the
clocks running at different speeds while the offset correction tackles the jitter and obviously
the time offset problems. An overview of the system is given in figure 2.10.

The main problems, which have to be tackled, are the different speed of the PTP and
the FPGA clock, the jitter from the PTP synchronization and the resulting offset of the
two clocks. Therefore, the concept with the offset and drift correction was chosen to be
implemented, because the other concepts were all insufficient. The drift correction takes care
of the clocks running at different speeds while the offset correction compensates the jitter and
obviously the time offset.
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Figure 2.10: Overview of the drift and offset correction in the FPGA

The timestamp unit of the current implementation already has a 64 bit register, counting
the ticks of the FPGA clock. One tick is approximately 16.7 ns2, which is not precise enough.
Since many other applications from ZI depend on this register, it must not be changed.
Therefore, the timestamp is extended by a fraction register. In order to be able to correct 1
ns during one second, the fraction register has to be 30 bit wide.

TT ick =
1

60Mhz
≈ 16.7ns

TT ick
1ns

≈ 16(= 4bit)

60′000′000
Ticks

s
(≈ 26bit)

26bit+ 4bit = 30bit

Drift Correction

The speed difference of the FPGA clock and the remote clock, which is the drift, shall be
equally corrected on each tick during one second (according to figure 2.10). Therefore, the
Drift register holds the current amount of Fractions3 that shall be added to the timestamp
register at every clock tick. Once per second this value gets updated by the current time error
(between the local time and the PPS Time).

The new drift time is low-pass filtered by an exponential moving average filter. This
methods suppresses short term time error due to the noisy PTP synchronization. Further

2One tick is the equivalent of the FPGA clock cycle period, which is 1
60Mhz

≈ 16.7 ns
3For higher precision, one tick is divided into 230 Fractions.
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details are available in section 2.3.4, Simulation of the Drift and Offset Correction.

After filtering, it has to be guaranteed that the new drift does not fall below the minimum
drift of 223. In order not to have the same timestamp twice, it is mandatory to increment the
tick value after 128 ticks, because a measurement sample, which has to be uniquely times-
tamped, is captured every 128 ticks. Therefore, the increment value (= offset increment +
drift increment) must be larger than 223(see following calculation).

The initial value of the drift register is 230, which is the equivalent of 1 tick (≈ 16.7ns).
Because of this, the drift register is 31 bit wide.

1Tick = 230 TickFractions

MinimumDrift >
1Tick

128
=

230

128
=

230

27
= 223 = 80000016

The maximum positive drift correction is 2 ticks - 1 Fraction per tick, which leads to a
correction of approximately 2 s/s:

MaximumPositiveDrift = 231 − 1
Fractions

T ick

MaxCorrection =
MaximumPositiveDrift ∗ 6 ∗ 107Tick

s

230
Fractions

T ick

∗ 109ns

6 ∗ 107
Tick

s

≈ 2s

The maximum negative drift is less than one second, because the timestamps have to be
unique:

MaximumNegativeDrift = 230 − 223Fractions

T ick

MaxCorrection = −
MaximumNegativeDrift ∗ 6 ∗ 107Tick

s

230
Fractions

T ick

∗ 109ns

6 ∗ 107
Tick

s

≈ −992 ms

In conclusion, the drift correction is in the range of -992 ms to 2 s.

Offset Correction

The idea is to compensate the offset after each PPS event by adding ±1 ns per tick to the
timestamp register.
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Figure 2.11: Timing diagram of the offset correction

At every tick, the timestamp register is compared to the calculated tick value of the next
PPS event, received by the Ethernet controller (see Figure 2.10). The difference is then
shifted by 26 bit, in order to get the difference in approximately 1 ns resolution. If a large
offset is detected (> 226), the timestamp register is overwritten with the time of the next
PPS event. This is necessary because a large error would take too long to correct, e.g. after
startup. If the value is not a large offset, the difference is stored in the offset register, which
is decremented to zero on every tick. As long as the offset register is nonzero, 226 Fractions
(equivalent to ≈1 ns) is added or subtracted to the timestamp register, depending on the sign
of the offset (see Figure 2.11). The offset correction by itself can not cause multiple measure-
ments with the same timestamp, because the step size of ≈ ±1 ns is small enough. However,
in combination with the drift, it is possible to cause multiple measurements, which is why the
minimum of 223 Fractions has to be guaranteed after adding the drift and the offset correction.

The size of the offset register is 31 bit, whereas the most significant bit is used as sign bit.
The offset correction is in the range of ≈ ±60 ms, since 1 ns or -1 ns can be corrected every
tick multiplied by 60 million ticks per second. If an offset is larger, it is corrected during the
next second.

Another possibility would be to overwrite the timestamp register with the PTP time
instead of using an offset correction. In this case, however, the unique timestamping of the
measurement frames are not guaranteed anymore if more than 127 ticks are corrected, leading
to a correction range of:

CorrectionRange = 127Ticks ∗ 1

6 ∗ 107
Ticks

s

= 2.117 µs

This correction range is sufficient since the requested synchronization precision is lower
than 2 µs. However, this concept is not preferable due to the possible lack of unique times-
tamping. In conclusion, the concept of only correcting the offset is not used for the imple-
mentation.
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2.3.4 Simulation

Before implementing one of the aforementioned concepts, simulations were made in order to
verify the feasibility of the concepts and get an idea of the timestamp precision.

Simulation Overview

All simulations are executed in Matlab using double precision for all variables. The granular-
ity of the simulation is 1 second. The timestamp error is calculated after every second and
plotted in a time diagram as well as in a histogram. The simulated device is a PTP slave
that synchronizes to a PTP master reference.

Figure 2.12 shows the simulation in the blue box in the center. Input vectors contain series
of exact seconds that are assumed to come from the remote master. The PTP synchronization
adds uncertainty to these values, which is modeled as normally distributed noise with a mean
value 0 ns and a standard deviation 5 ns. The simulated synchronization then processes
these values by applying offset and drift correction. It also takes into account a fixed drift
of the Ethernet clock and the Etzel clock. It then generates the ’current timestamp’ which
is compared to the reference seconds from the input (before adding noise). The difference is
finally evaluated as ’Timestamp error to master’.
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Figure 2.12: Simulation concept

The user has the option to change the following options:

� Simulation duration in seconds.

� PTP clock drift in ppm.

� FPGA clock drift in ppm.

� Standard deviation of the PPS Sync.

� Enable/Disable drift correction.

� Enable/Disable precise drift correction (divide by 60 million instead of 226 ≈ 67 million).
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� Skip the lock-in phase of the drift correction

� Enable/Disable offset correction.

� Enable/Disable the update of the timestamp register with the PTP time after every
second.

� Define the Alpha coefficient of the exponential moving average filter, applied to drift
correction.

For all simulations, the following assumptions are made:

� The master PTP clock is assumed to be perfect since it is the reference for the simulation.

� The PTP clock of the slave has an accuracy of 30 ppm.

� The accuracy of the FPGA clock is 0.5 ppm.

� The PTP synchronization noise is assumed to be normally distributed with mean 0ns
and standard deviation 5 ns.

In the following, the performed simulations are described in detail and the results dis-
cussed.

Simulation of Timestamp update with PTP time

This simulation is made with neither a drift nor an offset correction. However, on every PPS
event, the timestamp register is overwritten with the current PTP time. The difference just
before the update is depicted as timestamp error in Figure 2.13.
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Figure 2.13: Simulation of the timestamp error. Only PTP time update enabled.

Compared to the master PTP clock, the slave has an offset with mean 30 µs due to the
different clock speeds of the PTP slave and the FPGA clock. During one second, the drift
is accumulated to such an error of approximately 30 µs (= 30ppm ∗ 1s). The update of the
timestamp register can lead to multiple measurement frames with the same timestamp if the
offset is negative. This is the case if the PTP clock is slower than the FPGA clock, which is
a quite possible scenario.

This concept is insufficient due to the large offset and the chance of multiple measurement
frames with the same timestamps.

Simulation of the Offset Correction

This simulation was made with only the offset correction enabled. Additionally, the times-
tamp register is not overwritten by the PTP time on the PPS event.
The offset correction by itself leads to the same result as depicted in Figure 2.13. The prob-
lem is that the offset is calculated at the beginning of the second. Therefore, the drift of
the current second can not be compensated, leading again to an offset of approximately 30
µs. However, the advantage of using the offset correction instead of updating the timestamp
register with the current PTP time is that multiple measurement frames with the same times-
tamp are not possible. This is due to the small correction of the offset at every clock cycle
instead of correcting the whole offset all at once.
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This concept is also insufficient since the synchronization of the master and the slave
timestamps are simulated to be in the range of ±30 µs. This is by far too much since the
precision is required to be always better than ±1 µs, which corresponds to the timestamping
rate of the measurement frames.

Simulation of the Drift Correction

This simulation was made with drift correction only, i.e. without any offset correction. Fur-
thermore, the master and slave clock frequencies run constantly at a different speed of 30
ppm. As depicted in Figure 2.14, the system becomes unstable. This behavior is reasonable
because the drift correction compensates offsets by increasing or decreasing the value added
to the timestamp register. After one second, the drift correction fully compensated the clock
frequency deviation. However, the timestamp error is still the same value due to the lack
of an offset correction, except for the jitter caused by the PTP synchronization. In order to
compensate the timestamp error, the drift correction overcompensates, resulting in a negative
deviation of the clocks. Thus the system is unstable.
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Figure 2.14: Simulation of timestamp errors using drift correction only. The system becomes
unstable without offset correction.

Obviously, the drift correction can only be used in combination with an offset correction.
Otherwise, the system becomes unstable.

Drift calculation The value of the Drift register is added to the Timestamp register on
every tick, which means that 60 million of such additions are made during one second. In
order to correct the drift precisely, the difference between the values of Timestamp and the
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expected PTP time from the Ethernet controller would have to be divided by 60 million.
However, a division in hardware is expensive in terms of time and resources. Due to that, a
shift by 26, which is approximately a division by 60 million, is performed instead. The error
of shifting instead of a division by 60 million is calculated in the following equation.

ShiftError =
226

60 ∗ 106
= 1.118481067

The relative error of using a shift instead of a division is therefore 11.85 % of the drift
error.

Simulation of the Drift and Offset Correction

This simulation determines the precision of the timestamp synchronization if offset as well as
drift correction are applied. In order to get a proper distribution of the timestamp error, the
lock-in phase of the drift correction is skipped, meaning that the PTP clock of the master
and the slave are running at exactly the same speed. Thus, there is no difference between the
precise and the approximated drift calculation.

Figure 2.15 depicts the result of the simulation of a PTP device that has been running
for a while and is synchronized. Note that the timestamp error is also normally distributed.4

However, the minimum, the maximum and the standard deviation value are higher than the
jitter from the PTP synchronization. The reason is that a short shift in the mean value of
the PTP synchronization jitter can make the drift correction believe that a clock drift has
to be compensated. However, if the drift correction value is low-pass filtered, e.g. by using
an exponential moving average filter5 with an alpha of 0.01, the standard deviation of the
timestamp errors can be reduced to 6.5 ns.

The smaller alpha is chosen, the better is the jitter of the PTP synchronization compen-
sated. However, deviations in the clock frequency, e.g. at start up, take much longer to be
compensated. The use of a variable alpha allows for the combination of a quick lock-in time
with a low standard deviation, which means that above a definable threshold a larger alpha
can be chosen than below the threshold.

4The slightly higher occurrence of large timestamp errors is due to the quantization of the FPGA clock.
An early PPS event prevents the last addition of the Drift register to the Timestamp, leading to missing
tick(≈ 16.7ns). The similar behavior occurs for late PPS events.

5y[n] = α ∗ x[n] + (1− α) ∗ y[n− 1], current value: x[n], last value: y[n-1], new value: y[n]
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Figure 2.15: Simulation of timestamp errors using offset and drift correction.

The lock-in behavior is depicted in figure 2.16. It represents the first seconds of the system
after power-up and until ’synchronization lock’ has been achieved. The initial error of 30 µs,
which stems from the simulated PTP clocks deviation of 30 ppm, is compensated after 5-10
seconds below a threshold of 20 ns.
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(b) Detail

Figure 2.16: Lock-in behavior with variable alpha drift exponential moving average filter.
Blue dashed line marks 20 ns.
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If nothing else is mentioned, a variable alpha was used for the exponential moving average
filter for drift correction. The following parameters were applied:

� Threshold for alpha switch: 50 ns

� Alpha below threshold: 1

� Alpha above threshold: 0.1

The idea of the variable alpha is to temporarily disable the moving average filter when a large
offset is detected. If the offset is small, the filter is activated and helps to reduce the noise of
the timestamp error.

System reaction

Various errors on the master and slave side were introduced in order to observe the system
reaction:

� Step in the master timestamps

� Ramp in the master timestamps

� Variable slave drift

� Missing signals are covered in section 2.3.4.

The following paragraphs describe the observed reactions of the system.

Step in the master timestamp A step of 100 ns was introduced in the master timestamps.
The according input data is depicted in figure 2.17a and the system reaction in figure 2.17b.
After two seconds, the error is compensated and the normally distributed noise prevails again.
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Figure 2.17: Reaction of the system to a manually introduced 100 ns step in the master time
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Ramp in the master time A ramp of 1 µs was introduced in the master timestamps over
the complete simulation duration of 10’000 seconds. This results in 0.1 ns

step of deviating master
timestamps. The resulting input data and observed distribution is depicted in figure 2.18.
An interesting observation is that the distribution of the timestamp error has a different form
than the previously simulated output distributions. It seems more like a normal distribution
and has a negligible mean value.
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Figure 2.18: Reaction of the system to a manually introduced 1 µs ramp in the master time

Variable Drift A variable drift was introduced on the local (slave) side atop of the previ-
ously applied fixed drift. In figure 2.19 a slow drift of +1 µs and -1 µs over 10 minutes each is
depicted and in figure 2.20 a fast drift over 30 seconds each. The simulated drift amounts to
±0.25 ppm in each case which is simulated over 10 minutes or 30 seconds. The respective drift
variation rates are: ±0.00042 ppm

s and ±0.00833 ppm
s . It is assumed that these rates cover

even worst case drift variation due to the impact of temperature variation on clock oscillators.

Due to the quick reaction of the moving average filter with variable alpha, the timestamp
error stays below ±100 ns in all tested cases.
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Figure 2.19: Reaction of the system to a manually introduced slow variable drift on the slave
side (local)
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Figure 2.20: Reaction of the system to a manually introduced fast variable drift on the slave
side (local)

Error Handling

The communication between FPGA and Central Processing Unit (CPU) takes place over the
following interfaces:

� PPS via dedicated signal line

� Data exchange over PCIe

– Timestamp Register ’Second’ from the CPU to the FPGA

– (Variable moving average Alpha from the CPU to the FPGA)

– Readout of FPGA Registers to the CPU (for Debugging and Control purposes)
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It has to be guaranteed that the FPGA still produces adequate timestamps if any of
these communication methods fail. Possible scenarios include: Loss of network connection
(no more active PTP synchronization), crash of the PTP application (therefore no Times-
tamp Updates), crash of the Ethernet controller (no PPS signal), complete communication
breakdown between FPGA and CPU.

Loss of Network Connection In this case, the generation of PPS signals via the Ethernet
controller and Timestamp Updates via the PTP software should still continue and therefore
allow the FPGA to generate correct (although not synchronized) timestamps.

No Timestamp Updates If the timestamp does not get updated, the next PPS signal
would result in the FPGA detecting a large offset. The FPGA would then reset its times-
tamp register to the old input value and repeat this behavior on every PPS pulse until the
timestamp gets updated again.

In order to prevent the above-mentioned behavior, a block is implemented in the FPGA,
which enables the overwriting of the timestamp only when a new PPS time is downloaded
from the CPU. Otherwise, the timestamp unit keeps running as a free-running counter.

Another possibility to mitigate the no timestamp update problem would be a simple
software solution, which introduces a check of the timestamp update value before it is sent
from the CPU to the FPGA and manipulate it if it is faulty. This check should occur once per
second and compare the timestamp value to the previous value. If it has not been changed, it
should increment it by 1 second. The only situation where this would not work is if the PTP
master correctly advises to change the time back by 1 second, resulting in the same second.
This would result in an ongoing error of 1 second. If the check is performed on the last two
timestamps, a failure would result in two same second timestamps before the check triggers
and increments. Since this concept produces additional problems, it is not implemented.

No PPS Signal If no PPS Signal occurs for more than 1 second, the FPGA Timestamping
should continue running without any interruption. The critical moment is when the PPS
signal reappears. The difference between the synchronized PTP time and the ’free-running’
FPGA time is the accumulated ’error from PTP master’ during the time when the PPS
signal was missing. As long as this difference does not exceed the large offset barrier, it can
be corrected with Drift and Offset correction. Otherwise a direct update of the timestamp
will occur.

No PPS Signal and no Timestamp Update The consequence of both signals missing,
is the same as ’No PPS Signal’. The same behavior results: The critical moment is when the
PPS signal plus Timestamp Updates reappear. The difference between the synchronized PTP
time and the ’free-running’ FPGA time is the accumulated error during the time when the
PPS signal was missing. As long as this difference does not exceed the large offset barrier, it
can be corrected with Drift and Offset correction. Otherwise a direct update of the timestamp
will occur.
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2.3.5 System Modeling

The offset and drift correction is similar to a Proportional-Integral (PI) controller (see Figure
2.10). The FPGA implementation can thus be described as a control loop model. The
model is used to determine and optimize the performance of the implementation. Therefore,
traditional control engineering tools can be used, which simplify the development process.

Control Loop Overview

The basic control loop of the FPGA implementation is depicted in Figure 2.21. The reference
of the control loop is the PTP time, which is downloaded every second. The measured
output is the value of the timestamp register. The measured error is fed into the controller,
which basically consist of the offset and drift correction. The system in this case is a simple
integrator, which adds the time from the offset and drift to the timestamp.

Controller System
TimestampPTP-Time

Figure 2.21: Control loop of the FPGA implementation.

Controller

The controller depicted in Figure 2.22 consists of two parts. Firstly, the offset correction,
which represents the proportional part and secondly the drift correction, which represents
the integral part. The introduced shift error gain is due to shifting the measured error by 26
bits instead of dividing by 60 millions. Due to this, the implementation is much simpler (see
section 2.3.4, paragraph Drift calculation). This shift error factor is determined as follows:

k =
6 ∗ 107

226
= 0.8941

Low-pass
Filter

Shift Error

k=0.8941

X(z) Y(z)

Offset (P)

Drift (I)

Figure 2.22: Block diagram of the controller.
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Low-pass Filter

The low-pass filter introduced in the previous paragraph is depicted in detail in Figure 2.23a.
First, the value of the last drift is added to the measured error. This is done in order to bias
the input value. The sum is then added to the previous drift, in order to get the new value
for the drift register. The weighting of the new value and the previous drift is α and (1−α),
respectively.

The block diagram in 2.23a is the direct conversion of the FPGA concept to a model.
By applying algebraic transformations, the model can be simplified to Figure 2.23b on the
right hand side. The simplification calculations can be found in section 2.3.5 in paragraph
Low-pass Filter.

z-1

a
 
= α

b
 
= 1-α

X(z) Y(z)

Measured
Error

Drift

(a) Direct model of the FPGA concept.

z-1

a
 
= α

X(z) Y(z)

Measured
Error

Drift

(b) Simplified block diagram.

Figure 2.23: Block diagram of the low-pass filter of the drift correction.

Calculation of the Transfer Functions

In this section, the transfer functions of the above mentioned model are determined. All
the transfer functions are time discrete since the reference, which is the PTP time from the
Ethernet controller, is updated only once per second. Moreover, the sampling time period Ts
is 1 second.

Low-pass Filter In this paragraph, the transfer function of the low-pass filter is deter-
mined. The basic equation of this filter is:

(X(z) + Y (z) ∗ z−1) ∗ α+ Y (z) ∗ z−1 ∗ (1− α) = Y (z)

and can be simplified to:

Y (z) = α ∗X(z) + Y (z) ∗ z−1

This equation can be rearranged to the following transfer function Gf of the low-pass filter:

Y (z)

X(z)
= Gf (z) =

a ∗ z
z − 1
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Controller In this paragraph, the transfer function of the controller is determined. the
controller consists of two paths, the proportional and the integral one. The transfer function
Gc of the controller can be calculated as follows:

Gc(z) = (1 + k ∗Gf (z)) = 1 +
k ∗ α ∗ z
z − 1

=
(1 + k ∗ α) ∗ z − 1

z − 1

The constant factor k is 0.8941 and is due to the shifting error.

System The system block consists of only an integrator, since the time is continuously
added to the timestamp register. The transfer function of a time discrete integrator is:

Gs(z) = Gintegrator(z) =
Ts
z − 1

=
1

z − 1

Open Loop The open loop gain Go is the transfer function of the whole implementation
without a feedback path.

Go(z) = Gc(z) ∗Gs(z) =
(1 + k ∗ α) ∗ z − 1

z − 1
∗ 1

z − 1
=

(1 + k ∗ α) ∗ z − 1

(z − 1)2

Closed Loop The closed loop gain Gcl is the transfer function of the whole implementation
with a feedback path and thus the transfer function of the FPGA implementation.

Gcl(z) =
Go(z)

1 +Go(z)
=

(1 + k ∗ α) ∗ z − 1

(z − 1)2

1 +
(1 + k ∗ α) ∗ z − 1

(z − 1)2

=
(1 + k ∗ α) ∗ z − 1

z ∗ (z + k ∗ α− 1)

Model Simulations

The control model is used to simulate the behavior of the FPGA implementation. The
simulation covers a step in the timestamp, a ramp in the timestamp and a clock drifting
away. In the following, details about the simulations and the results are described.

Simulation Overview The simulations were conducted in Matlab. With the use of this
program, the output of the above determined transfer function of the whole FPGA imple-
mentation is computed. Unfortunately, it is not possible to define an initial value, which is
why only deviations from the continuously increasing timestamp are used as input data. If
the increasing of the timestamp were simulated, the system would need an certain amount
of time in order to count as fast as the reference. The results from the model simulation are
additionally compared to the simulation results of the Very High Speed Integrated Hardware
Description Language (VHDL) test bench, which is used to test the implementation of the
FPGA, and the previously introduced Matlab simulation. Note that the test bench simulation
was not conducted by simulating every tick but 214 ticks concurrently, resulting in a precision
loss. The reason is the extremely long simulation time.
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Determination of Alpha The filter coefficient α for all simulations is 0.125 (= 1
8). α was

determined by the Monte Carlo simulation depicted in Figure 2.24. The x-axis represents α
while the y-axis represents the standard deviation of the PTP time synchronization. α above
0.15 can not compensate the jitter from the PTP time synchronization, whereas α below 0.1
can not compensate the slow frequency aspects of the jitter. Therefore, α was chosen to be
0.125 because it is between 0.1 and 0.15 and easily to be implemented in hardware.
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Figure 2.24: Monte Carlo simulation for determining α. Best values between 0.1 and 0.15.

Timestamp Step In this scenario, a sudden step in the reference time, which is the PTP
time from the Ethernet controller, is simulated. The results are depicted in Figure 2.25. The
input data, which is depicted in the upper plot, is the PTP time between two PPS events. In
idle mode, the number of ticks between two PPS is 60 million. In the simulation, the values
are slightly lower because of the limited resolution of the test bench.
At second four, the step in the PTP time occurs and has an amplitude of approximately
82000 ticks per seconds (equivalent to 1.37 ms). The system can react to the step for the
first time one second after the step occurred. The offset correction then fully compensates
the step. However, the drift correction needs around 25 seconds to recover. During this time,
the measured error is negative.
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Figure 2.25: Three simulations of a step in the timestamp. The deviation between the
simulations is depicted in the plot at the bottom.

The results from the model simulation, the test bench of the implementation and the
simulation match very well. The difference between the three simulations is depicted in the
figure at the bottom. The reference signal is the Testbench Offset Register. The maximum
difference of -175 ns at second five seems to be very large at first sight, however, the introduced
timestamp step of 1.37 ms is also very large and unrealistic in daily use. The reason for
choosing such a huge timestamp step is the limited resolution of the test bench simulation.
The deviation between the test bench and the other two simulations stem from the limited
resolution of the test bench simulation.

PTP Time Ramp In this scenario, a ramp in the reference time is simulated. Such a ramp
is equivalent to a step in the PTP clock frequency, meaning that e.g. the PTP master clock
changes the frequency at a certain point in time. The results are depicted in Figure 2.26.
The input data are in the same format as described in the previous paragraph, representing
the PTP time between two timestamps. Starting at second four, the time between two PPS
events is constantly growing larger representing the ramp in the reference time. The simu-
lated clock frequency deviation, which leads to such a ramp, is 273 ppm or an increase of
16383 ticks between two PPS events. Typical values for clock drifts are in the range of 30
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ppm, however, the limited resolution of the test bench does not allow such small drifts.

Again, the system can react to the time reference ramp for the first time one second
after the ramp started. The error from the last second is continuously compensated by the
offset correction, preventing an accumulation. However, the drift correction needs around 45
seconds to adapt the new clock speed.
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Figure 2.26: Three simulations of a ramp in the timestamp. The deviation between the
simulations is depicted in the bottom plot.

Similar to the Timestamp Step simulation, the result of the Timestamp Ramp simulation
is depicted. This simulation proves that all the simulations have pretty much the same output.
The difference between the simulations is depicted in the figure at the bottom. The Testbench
Offset Register was taken as reference signal. The deviation between the test bench and the
other two simulations stems from the limited resolution of the test bench simulation.

Clock Drift In this scenario, the drift of the PTP clock frequency is simulated. Such a
drift could be caused in reality by a temperature change in the master device. The results
are depicted in Figure 2.27.
The input data is in the same format as described in the previous paragraphs. From second
four to 26, the clock frequency of the master is linearly increasing. After that, the frequency

33



decreases again until the initial frequency is reached.

The error in this case is increasing at the beginning and levels off at a value of about 2.3 ms.
This result is reasonable since the drift correction is not capable of correcting a continuously
changing frequency. At second 27, the clock drift starts to decrease, which causes the error
to become negative. In the end, the error levels off at the value of -2.3 ms.
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Figure 2.27: Three simulations of a ramp in the clock frequency. The deviation between the
simulations is depicted in the bottom plot.

Again all the simulations produce pretty much the same output. However, this simulation
reveals the limit of the drift and offset correction. Permanent changes in the clock frequency
can not be fully compensated and result in a constant timestamp error as depicted in the
center figure. The differences between the timestamp errors are depicted in the figure at the
bottom. The Testbench Offset Register was taken as reference signal. The deviation between
the errors stems from the limited resolution of the test bench simulation.
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Chapter 3

Implementation

3.1 Project overview

The implementation process is divided into two steps. First, the in-house PTP stack was
implemented on the Apalis Evaluation Board[6] so that the correct functionality of the time
synchronization can be proved. Etzel, which is the final product of ZI on which the time
synchronization will be implemented, uses the same processor board as the Apalis Evaluation
Board. Second, the PTP stack will be integrated into Etzel.

3.2 PTP Stack Implementation on Apalis T30

This section describes the implementation of the InES PTP stack on the Apalis Evalua-
tion Board. Moreover, the occurred problems of the implementation and the corresponding
solutions are described.

3.2.1 Overview

The implementation, depicted in Figure 3.1, consists of four layers: PTP Application, InES
PTP Stack, OS and the Ethernet Controller.

The PTP Application layer contains the main function, which is responsible for starting
and maintaining the 1588 Protocol Engine and handling the keyboard input.

The PTP Stack from InES is the in-house implementation of the PTPv2 standard. For
more details, see Section 2.2.2.

The OS Linux layer basically consists of three parts. The network socket and the PTP
clock interface communicate with the IGB, which is the Intel driver of the Ethernet controller
beneath. The original version of the driver is v5.1.2. Due to insufficient implementation of
the offset adjustment and the lack of PPS generation, the driver was modified (see Section
3.2.5 and 3.2.8). The handling of the PTP as well as the frames of the PTP application is
pretty straight forward and was already implemented and perfectly working on the original
version of the IGB driver.
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The I210 from Intel is the Ethernet controller mounted on the Apalis T30 processor
board. It supports the PTPv2 standard and has therefore dedicated registers to adjust the
offset and the drift of the PTP clock. Furthermore, the I210 supports hardware timestamping
of incoming and outgoing frames.

InES
PTP-
Stack

OS
Linux

1588 Protocol Engine

Port
Interface

TSU
Interface

Clock
Interface

TCP UDP

IP

IGB Driver

Ethernet Controller
I210

PTP Application

PTP Frames

PPS Gen.

PHY

MAC TSU Clock

Frames

Timestamps

Frames Enable Offset Drift Time

Time

Configuration

Frames

Ethernet PPS Pin

MII

Sync.Inserts 
timestamps 
into frames

PTP APILog
Interface

Human
Interface

Socket
PTP_Clock

Offset Drift Time

Figure 3.1: Overview of the PTP Stack integration

3.2.2 PTP Application

The PTP application is the entry point of the program and thus contains the main function
which handles the passed arguments and initializes the 1588 Protocol Engine (see Figure 3.2).
Additionally, three threads are started:

� The Timer Thread creates a tick event every 100 ms for the 1588 Protocol Engine.

� The Listen on Keyboard Thread receives the user input from the keyboard. If a whole
line is received, it will be forwarded to the 1588 Protocol Engine by creating an event.

� The PPS Listener Thread prepares the time of the next PPS event at the beginning of
every second and forwards it to the ZI application, which will download the time to the
FPGA.

After the initialization, the main() function calls the dispatcher of the 1588 Protocol
Engine on every tick event, until the user quits the program. The dispatcher is responsible
for handling the pending events of the protocol engine.
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Figure 3.2: Overview of the PTP Application

3.2.3 Activation of the HW Timestamping

The Ethernet controller I210 supports software as well as hardware timestamping. The PTP
protocol requires timestamps as precise as possible which is why the hardware timestamping
is chosen for all of the configurations. For further readings, the Linux documentation[7] pro-
vides a description of the timestamping options.
First, the hardware of the Ethernet controller has to be enabled for transmit and receive
hardware timestamping (see Listing 3.1). The timestamping of transmitting frames can ei-
ther be activated or deactivated, whereas receiving frames can additionally be filtered. This
provides an advantage in a scenario of high network traffic. In this case, it is possible to
timestamp only incoming PTP messages instead of every frame, setting the hwconfig.rx filter
to HWTSTAMP FILTER PTP V2 L2 EVENT. More details about RX timestamp filtering
can be found in Section A.1 in the appendix.

1 // p t p 2 p o r t i t f a p a l i s t 3 0 . c
2

3 s t r u c t i f r e q hwtstamp ;
4 s t r u c t hwtstamp conf ig hwconfig ;
5

6 . . .
7 // *** Act ivate HW Timestamping ***

8 // I n i t i a l i z a t i o n
9 memset(&hwtstamp , 0 , s i z e o f ( hwtstamp ) ) ;

10 s t rncpy ( hwtstamp . i f r name , inter face name , s i z e o f ( hwtstamp . i f r name ) ) ;
11 hwtstamp . i f r d a t a = ( void *)&hwconfig ;
12 memset(&hwconfig , 0 , s i z e o f ( hwconf ig ) ) ;
13

14 // Timestamp a l l TX packets
15 hwconfig . tx type = HWTSTAMP TX ON;
16

17 // Timestamp a l l RX packets .
18 hwconfig . r x f i l t e r = HWTSTAMP FILTER ALL;
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19

20 // Write the c o n f i g u r a t i o n
21 // Caution : Socket has to be open !
22 i f ( i o c t l ( p o r t i t f . sock id , SIOCSHWTSTAMP, &hwtstamp ) < 0)
23 {
24 PTP2 MONITORING( PTP2 LEVEL ERROR | PTP2 CAT PORT ITF , (PTP2 FAULT LOG ERROR

, ”Can ’ t s e t HW Timestamping” ) ) ;
25 goto c l ean up ;
26 }
27 . . .

Listing 3.1: Activating the Ethernet controller for HW timestamping

Second, the socket has to be configured so that the usage of hardware timestamping is
enabled in the OS. Additionally, the format of the timestamp has to be chosen (see Listing
3.2). Finally, the socket is reconfigured by calling the function setsockopt().

1 // p t p 2 p o r t i t f a p a l i s t 3 0 . c
2

3 i n t s o t i me s t a m p i n g f l a g s = 0 ;
4

5 . . .
6 // *** Set Socket to a c t i v a t e HW Timestamp ***

7 // Timestamp RX and TX in hardware
8 s o t i me s t a m p i n g f l a g s |= SOF TIMESTAMPING TX HARDWARE |

SOF TIMESTAMPING RX HARDWARE;
9

10 // Set Socket to r epor t timestamp in c o n t r o l message and i t s format
11 s o t i me s t a m p i n g f l a g s |= SOF TIMESTAMPING RAW HARDWARE;
12

13 // Write the socket opt ions
14 // Caution : Socket has to be open !
15 i f ( s e t sockopt ( p o r t i t f . sock id , SOL SOCKET, SO TIMESTAMPING, &

so t imes tamp ing f l ag s , s i z e o f ( s o t i me s t a m p i n g f l a g s ) ) < 0)
16 {
17 PTP2 MONITORING( PTP2 LEVEL ERROR | PTP2 CAT PORT ITF , (PTP2 FAULT LOG ERROR

, ” Error whi l e s e t t i n g socket opt ions \n” ) ) ;
18 goto c l ean up ;
19 }
20 . . .

Listing 3.2: Configure the socket for HW timestamping

The socket can be configured to timestamp receive and send packets either in software or
in hardware. The corresponding flags are as follows:

� SOF TIMESTAMPING TX HARDWARE: try to obtain TX time stamps in hardware

� SOF TIMESTAMPING TX SOFTWARE: try to obtain TX time stamps in software

� SOF TIMESTAMPING RX HARDWARE: try to obtain RX time stamps in hardware

� SOF TIMESTAMPING RX SOFTWARE: try to obtain RX time stamps in software

Moreover, the socket supports three different formats for reporting timestamps in a gen-
erated control message.
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� SOF TIMESTAMPING SOFTWARE: Report systime if available

� SOF TIMESTAMPING SYS HARDWARE: Report hwtimetrans if available

� SOF TIMESTAMPING RAW HARDWARE: Report hwtimeraw if available

However, only the software and the raw hardware timestamping are available from the
Ethernet controller.

3.2.4 Timestamping of PTP Frames

The timestamping of ingoing and outgoing frames is performed by the TSU in the Ethernet
controller[8]. The timestamps are inserted on-the-fly and the checksum of the headers are
recalculated. The TSU is as close as possible to the PHY in order to keep the timestamp
as deterministic as possible. The message timestamp point (depicted in Figure 3.3) is at the
very beginning of the frame for the same reason.

Ethernet
Start of Frame

Delimiter

Timestamp
Point

First Octet
following

Start of Frame

Preamble
Octet

Bit Time

1

0

Figure 3.3: Timestamp point of in- and outgoing frames

Incoming PTP frames are received and timestamped by the MAC of the Ethernet con-
troller. The reception timestamp is attached to the frame and via the kernel forwarded to the
port interface of the PTP Stack which on the one hand provides the 1588 Protocol Engine
with the received message and on the other hand moves the frame to the TSU interface of
the PTP stack, where the timestamp is extracted from the frame and forwarded to the 1588
Protocol Engine.
Timestamps of outgoing frames are similarly received since the transmit PTP frame is looped
back after the on-the-fly timestamping of the TSU to the message error queue of the socket.
The origin field indicates that this message stems from the timestamping rather than from
an error.

The RX as well as the TX messages are received from the socket by calling the recvmsg()
function (see Listing 3.3). In order to receive messages from the error queue, the flag
MSG ERRQUEUE must be set.

1 // p t p 2 p o r t i t f a p a l i s t 3 0 . c
2

3 void *PTP2 PortIt f T rece iveThread ( void *port number )
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4 {
5 . . .
6 // Receive TX messages ( looped back v ia the e r r o r queue )
7 pkt l ength = recvmsg ( p o r t i t f . sock id , &msg , r e cvmsg f l ag s | MSG ERRQUEUE ) ;
8 . . .
9 // Receive RX messages

10 pkt l ength = recvmsg ( p o r t i t f . sock id , &msg , r e cvmsg f l ag s ) ;
11 . . .
12 }

Listing 3.3: Receive messages including timestamps from the socket.

The timestamp is located in the control message of the corresponding message. In the
cases of RX and TX, the message is therefore forwarded to the TSU interface in order to
extract the timestamp from the message (see Listing 3.4). Afterwards, the RX message is
forwarded to the 1588 Protocol Engine for further handling.

1 // p t p 2 t i m e s t a m p i t f a p a l i s t 3 0 . c
2 PTP2Boolean PTP2 TimestampItf T pushTimestampToHandler ( unsigned char msg type

, s t r u c t msghdr *msg , UInteger8 * const c l o c k i d , UInteger16 sourcePortId ,
UInteger16 sequenceId )

3 {
4 s t r u c t cmsghdr *cmsg ;
5 . . .
6 /* get the timestamp from the socket */
7 f o r ( cmsg = CMSG FIRSTHDR(msg) ; cmsg ; cmsg = CMSG NXTHDR(msg , cmsg ) )
8 {
9 switch ( cmsg−>cmsg l eve l )

10 {
11 case SOL SOCKET:
12 switch ( cmsg−>cmsg type )
13 {
14 . . .
15 case SO TIMESTAMPING:
16 {
17 // Get c o n t r o l message data
18 s t r u c t t imespec *stamp = ( s t r u c t t imespec *)CMSG DATA( cmsg ) ;
19

20 // The cmsg data are in the format o f :
21 // s t r u c t scm timestamping {
22 // s t r u c t t imespec syst ime ;
23 // s t r u c t t imespec hwtimetrans ;
24 // s t r u c t t imespec hwtimeraw ;
25 // } ;
26 // However , t h i s s t r u c t i s not de f i ned !
27

28 // Choose the raw time s i n c e hwtimetrans i s not supported !
29 stamp++;
30 stamp++;
31

32 // Copy timestamp
33 timestamp2−>timestamp . s e c o n d s f i e l d = stamp−>t v s e c ;
34 timestamp2−>timestamp . n a n o s e c o n d s f i e l d = stamp−>tv n s e c ;
35

36 // Add timestamp to 1588 Protoco l Engine
37 PTP2 Time T add ( &timestamp2−>timestamp , &timestamp2−>timestamp ,

&temp time ) ;
38 PTP2 TimestampItf T push ( timestamp2 ) ;
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39 break ;
40 }
41 d e f a u l t : break ;
42 }
43 break ;
44 d e f a u l t : break ;
45 }
46 }
47 . . .
48 }

Listing 3.4: Extract the timestamp from the PTP message.

3.2.5 Generation of PPS

The Ethernet controller provides basically three different possibilities of generating a PPS
signal. Only one is described in the following. The other two can be found in the datasheet
of the I210[9].

The PPS generation is autonomously executed in hardware. The principle described in
the following is also depicted in Figure 3.4. The SYSTIM register, which contains the current
PTP time, is compared to the TRGTTIM register, which is initially set to one or two seconds
in the future, in order not to miss the start of the PPS generation. As soon as the value of
SYSTIM is equal or larger than TRGTTIM, the initially defined SDP is cleared. Additionally,
the value from the third register, FREQOUT, is added to the TRGTTIM register. Therefore,
the value of the FREQOUT register represents the half clock cycle duration. As soon as the
value of SYSTIM is equal or larger than TRGTTIM the second time, the Software Defined
Pin (SDP) is toggled and the value from FREQOUT is again added to TRGTTIM. From this
point, this procedure will continue until it is stopped by the user.

Note that according to the datasheet of the I210 only values between 8 and 70’000’000
and 125’000’000, 250’000’000 or 500’000’000 ns are allowed for the FREQOUT register.
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Figure 3.4: Principle of the PPS generation of the I210 Ethernet controller.
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However, the IGB driver does not inherently support the generation of PPS signals. For-
tunately, software from third party sources[10][11] were available on the Internet. With the
use of these two examples, the IGB driver was rewritten (see Listing 3.5), in order to enable
the PPS generation on the Ethernet controller I210.

1 // l inux−toradex / d r i v e r s / net / igb / igb ptp . c
2

3

4 s t a t i c i n t i g b p t p e n a b l e i 2 1 0 ( s t r u c t p t p c l o c k i n f o *ptp ,
5 s t r u c t p t p c l o c k r e q u e s t * rq , i n t on )
6 {
7 s t r u c t i gb adapte r * i gb = c o n t a i n e r o f ( ptp , s t r u c t igb adapter ,
8 ptp caps ) ;
9 s t r u c t e1000 hw *hw = &igb−>hw;

10 unsigned long f l a g s ;
11 s t r u c t t imespec t s ;
12 u32 tsauxc , tsim , r egva l = 0 ;
13

14 switch ( rq−>type ) {
15 . . .
16 case PTP CLK REQ PPS :
17 pr in tk ( ”%s (%d) : PPS %s on SDP1\n” , FUNCTION , LINE , on?” enabled ” : ”

d i s ab l ed ” ) ;
18

19 i f ( on ) {
20 /* Ensure c o r r e c t i n i t i a l s t a t e o f c o n f i g u r a t i o n r e g i s t e r s */
21 r egva l = E1000 READ REG( hw, E1000 TSAUXC ) ;
22 r egva l &= ˜TSAUXC EN CLK0;
23 E1000 WRITE REG( hw, E1000 TSAUXC , r egva l ) ;
24

25 r egva l = E1000 READ REG( hw, E1000 TSIM ) ;
26 r egva l &= ˜TSAUXC EN TT0;
27 E1000 WRITE REG( hw, E1000 TSIM , r egva l ) ;
28

29 /* Set f i x h a l f per iod o f 500 ms */
30 E1000 WRITE REG( hw, E1000 FREQOUT0, NSEC PER SEC / 2 ) ;
31 E1000 WRITE FLUSH( hw ) ;
32

33 /* Map SDP1 to FREQOUT0 */
34 r egva l = E1000 READ REG( hw, E1000 TSSDP ) ;
35 r egva l |= TS SDP1 SEL FC0 | TS SDP1 EN ;
36 E1000 WRITE REG( hw, E1000 TSSDP , r egva l ) ;
37

38 /* Set SDP1 to output */
39 r egva l = E1000 READ REG( hw, E1000 CTRL ) ;
40 r egva l |= ( E1000 CTRL SDP1 DIR ) ;
41 E1000 WRITE REG( hw, E1000 CTRL , r egva l ) ;
42 E1000 WRITE FLUSH( hw ) ;
43

44 /* Align the f i r s t r i s i n g edge to the s t a r t o f the
45 * next second .
46 * As soon as SYSTIM reaches the TRGTTIM the f i r s t time ,
47 * the output w i l l be s e t to 0 . Therefore , we s t a r t at
48 * the next second + 500ms ( Hal f Period ) .
49 */
50 ptp−>gett ime ( ptp ,& t s ) ;
51 t s . t v n s e c = NSEC PER SEC / 2 ;
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52 t s . t v s e c += 1 ;
53 E1000 WRITE REG( hw, E1000 TRGTTIML0 , t s . t v n s e c ) ;
54 E1000 WRITE REG( hw, E1000 TRGTTIMH0, t s . t v s e c ) ;
55 E1000 WRITE FLUSH( hw ;
56

57 /* Enable i n t e r r u p t s :
58 * An i n t e r r u p t i s generated at the beg inning o f
59 * every second .
60 */
61 r egva l = E1000 READ REG( hw, E1000 TSIM ) ;
62 r egva l |= ( TSINTR SYS WRAP ) ;
63 E1000 WRITE REG( hw, E1000 TSIM , r egva l ) ;
64 E1000 WRITE FLUSH( hw ) ;
65

66 /* Enable FREQOUT0 */
67 r egva l = E1000 READ REG(hw, E1000 TSAUXC ) ;
68 r egva l |= ( TSAUXC EN CLK0 | TSAUXC ST0 ) ;
69 E1000 WRITE REG( hw, E1000 TSAUXC , r egva l ) ;
70 E1000 WRITE FLUSH( hw ) ;
71 }
72 e l s e
73 {
74 /* Deact ivate the PPS genera t i on */
75 r egva l = E1000 READ REG( hw, E1000 TSAUXC ) ;
76 r egva l &= ˜TSAUXC EN CLK0;
77 E1000 WRITE REG( hw, E1000 TSAUXC , r egva l ) ;
78

79 r egva l = E1000 READ REG( hw, E1000 TSIM ) ;
80 r egva l &= ˜TSAUXC EN TT0;
81 E1000 WRITE REG( hw, E1000 TSIM , r egva l ) ;
82

83 r egva l = E1000 READ REG( hw, E1000 TSSDP ) ;
84 r egva l &= ˜TS SDP1 EN ;
85 E1000 WRITE REG( hw, E1000 TSSDP , r egva l ) ;
86 E1000 WRITE FLUSH( hw ) ;
87 }
88 . . .
89

90 re turn 0 ;
91 }
92

93 re turn −EOPNOTSUPP;
94 }

Listing 3.5: Activation/Deactivation of PPS pulses on the Ethernet controller I210.

3.2.6 PTP Clock Drift Control

The PTP clock of the master and the slave run at a different speed, which is why the drift
of the slave clock has to be controlled. Therefore, a PI (Proportional-Integral) controller is
implemented, which updates the desired drift value. The control loop function is called after
receiving a Follow-up message in Two-step mode or after receiving a Sync message in One-
step mode, respectively. The weighting of the P and the I value (denoted in the Listing 3.6)
is based on empirical values, developed by InES. If offsets larger than 400 µs are detected,
the whole drift control loop will be skipped and the new time directly set by the software.
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1 // p t p 2 c l o c k i t f a p a l i s t 3 0 . c
2

3 PTP2Boolean PTP2 ClockIt f T loopControl (
4 PTP2 Time T* const out ,
5 const PTP2 Time T* o f f s e t ,
6 const PTP2 Time T* rece ived t imestamp new ,
7 const PTP2 Time T* rece ived t imestamp o ld ,
8 const PTP2 Time T* sync rece ip t new ,
9 const PTP2 Time T* s y n c r e c e i p t o l d )

10 {
11 s t a t i c long long a c c u d r i f t = 0 ;
12 s t a t i c long long o l d d r i f t = 0 ;
13 . . .
14 // Add new d i f f e r e n c e to accumulated d r i f t
15 a c c u d r i f t = a c c u d r i f t + d i f f n s p e r s ;
16

17 // Copy i n i t i a l va lue s
18 I = a c c u d r i f t ;
19 p = d i f f n s p e r s ;
20

21 // Weighting the va lue s
22 p = (p+2) *3/4 ;
23 I = ( I +8) *3/16 ;
24

25 // Ca lcu la te the c o n t r o l l e d v a r i a b l e
26 d r i f t = o l d d r i f t + p + I ;
27 . . .
28 }

Listing 3.6: Drift control loop.

3.2.7 PTP Clock Offset Correction

The above-mentioned control loop does also calculate the offset between the master and the
slave clock. The PTP2 ClockItf T setOffset() function (also in ptp2 clockitf apalis t30.c) then
calls the driver to set the new offset. For large offsets of 400 µs or more, the offset is added
to the actual time and directly set from the application. Otherwise, the offset is handed to
the driver for more accurate, incremental correction. In order to get the highest accuracy,
the hardware correction, which is not implemented in the standard IGB driver v5.1.2, was
activated (see Offset Adjust Implementation in Section 3.2.8 ).

3.2.8 Problems during the Implementation

Although a working PTP stack with example implementations and a Linux driver, which sup-
ports hardware timestamping and clock adjustments, was available, some problems occurred
during the implementation.

SDP Pin not Routed

PPS signals are very important in order to compare the synchronization of two or more PTP
devices. In the Ethernet controller I210, there are no dedicated pins for PPS output, but
SDP are used for this purpose.
The problem of using a SDP is the fact that none of them are routed on the processor board
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and thus not accessible from the outside. However, the Ethernet controller provides a function
to internally route a SDP to either the active or the link Light Emitting Diode (LED) of the
Ethernet connector.
In the case of this project, the PPS is routed to the active LED. It requires a hardware
modification, since there is a low pass filter on the connection between Ethernet controller
and LED. Moreover, the LED has to be removed from the connection since it would disturb
the measurements. By removing the resistor R5 and the capacity C109 on the evaluation
board[12], the connection can be used for measuring purposes.
Unfortunately, this workaround leads to other problems. First, it is obviously impossible
to concurrently use the LED for Ethernet signaling purposes and for PPS output. In some
applications, this may be a problem. Second, the slew rate, which is the change of the output
in volts per seconds, is much smaller in case of the LED pin compared to the SDP since the
pin is only supposed to drive a LED. As depicted in Figure 3.5, a level change on the SDP
takes one or two nanoseconds whereas on the LED pin it takes around 45 ns. The slew rate of
the LED pin has to be increased on the final Printed Circuit Board (PCB) by an appropriate
termination of the signal line. Nevertheless, using the LED pin is the only option to get the
signal out of the processor board without modifying its hardware. This is why this pin is
going be used by ZI.

Figure 3.5: Slew rate difference between the LED pin (blue) and the SPD (yellow)

Additionally to the aforementioned problems, another problem concerning the LED pin
occurred during the implementation, namely the pulse duration varies from second to second
due to an unpredictable offset on the positive edge. While the negative slope occurs precisely
with a period of one second, the period of the positive slope is in a range of about 33 ms (see
Figure 3.6). The positive slope of the SDP does not exhibit such variable offset behavior.

Using the LED pin has a lot of disadvantages which could be avoided if the SDP pin is
routed to the connector of the processor board instead of the LED pin. This would require
that the hardware of the Apalis processor board has to be modified for every Etzel produced,
which is not acceptable for ZI.
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Figure 3.6: Range of the positive slope occurrence on the LED pin with infinite persistence.
Blue is the master, yellow the slave PPS.

Offset Adjust Implementation

After getting the PTP stack to work on the evaluation board, the comparison of the PPS
signal of the master and the slave revealed a synchronization of approximately ±10 µs, which
is much higher than the expectation of a synchronization in the range of nanoseconds. The
reason for this inaccuracy was the badly implemented driver function (igb ptp adjtime i210())
responsible for correcting the PTP clock offset. Instead of using the dedicated hardware
register TIMADJ of the Ethernet controller, the correction in the driver was done in software
by reading the current time, adding the offset and writing back the corrected time. This
method in unusable in the case of nanosecond offsets since an unpredictable time passes
between the reading and the writing, leading to an imprecise offset correction.
In order to get the best synchronization, the driver function was rewritten to use the dedicated
TIMADJ register if the offset is smaller than 10 µs (see Listing 3.7). For larger offsets, the
previously implemented code is reused since the TIMADJ corrects the offset by adding or
subtracting 1 ns at each clock cycle (8 ns) to the PTP time, until the offset is corrected.
Therefore, correcting a large offset (i.e. hours or days) would take a lot of time1 whereas
correcting the time by adding the offset to the current time only takes one execution of the
time adjustment function.

1 // l inux−toradex / d r i v e r s / net / igb / igb ptp . c
2

3 . . .
4 s t a t i c i n t i g b p t p a d j t i m e i 2 1 0 ( s t r u c t p t p c l o c k i n f o *ptp , s64 de l t a )
5 {
6 s t r u c t i gb adapte r * i gb = c o n t a i n e r o f ( ptp , s t r u c t igb adapter ,
7 ptp caps ) ;
8 unsigned long f l a g s ;
9 s t r u c t e1000 hw *hw = &igb−>hw;

10 u32 a b s d e l t a = 0 ;
11 const s64 l i m i t = 10000; // Set l i m i t to +/− 10 us
12 s t r u c t t imespec now , then = ns to t ime spec ( d e l t a ) ;
13

1The TIMADJ is capable of correcting a maximum offset of ±125 ms during one second (125’000’000 clock
cycles times ±1 ns).
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14 // I f the o f f s e t i s with in the l im i t , ad jus t by hardware , e l s e by so f tware
15 i f ( d e l t a < l i m i t && d e l t a > (−1)* l i m i t )
16 {
17 i f ( d e l t a != 0 )
18 {
19 i f ( d e l t a < 0 )
20 {
21 a b s d e l t a = ( u32 ) ( (−1) * d e l t a ) ;
22 a b s d e l t a |= ISGN ;
23 }
24 e l s e
25 {
26 a b s d e l t a = ( u32 ) d e l t a ;
27 }
28

29 s p i n l o c k i r q s a v e (&igb−>tmreg lock , f l a g s ) ;
30

31 E1000 WRITE REG(hw, E1000 TIMADJL , a b s d e l t a ) ;
32

33 s p i n u n l o c k i r q r e s t o r e (&igb−>tmreg lock , f l a g s ) ;
34 }
35 }
36 e l s e
37 {
38 // *** Or ig ina l Code ***

39 s p i n l o c k i r q s a v e (&igb−>tmreg lock , f l a g s ) ;
40

41 i g b p t p r e a d i 2 1 0 ( igb , &now) ;
42

43 now = timespec add (now , then ) ;
44

45 i g b p t p w r i t e i 2 1 0 ( igb , ( const s t r u c t t imespec *)&now) ;
46

47 s p i n u n l o c k i r q r e s t o r e (&igb−>tmreg lock , f l a g s ) ;
48

49 // *** End o f Or i g i na l Code ***

50 }
51

52 re turn 0 ;
53 }
54 . . .

Listing 3.7: Implementation of the hardware offset correction enable in the IGB driver.

3.2.9 Precision of the PTP Synchronization

Before integrating the PTP stack implementation into Etzel, the synchronization accuracy
between two evaluation boards and thus the feasibility to fulfill the synchronization require-
ment of 10 ns was determined. Measurements showed a standard deviation of 4.18 ns and a
mean value of -0.5 ns, measured between the PPS pulses (see Results U1 - Time Offset (PPS)
in section 7.1.2).
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3.3 Integration into Etzel

The integration of the PTP implementation is mainly done by ZI itself since they have the
know-how of the Etzel board and its software, i.e. the VHDL code of the FPGA and the
software of the data and web server. The work covered by this project is described in this
section.

3.3.1 FPGA Interface

The PPS time, which is the PTP time of the next PPS event, has to be delivered to the
FPGA at the beginning of every second. This ensures that there will be enough time for the
delivery.

The beginning of a second is detected by the dedicated thread PPS Listener (see Section
3.2.2), polling the PTP time every 10 ms. Another possible way would be to use the interrupt
generated every second by the Ethernet controller. However, the implementation of the
handling or even the signaling of interrupts to the user space is an expensive task to implement,
which is why the polling method was eventually used.
Whenever the second field of the PTP time increments, the time of the next PPS event is
generated by rounding up the actual PTP time and then forwarded to the ZI application,
which will write the time to the FPGA. The interface between PTP application and ZI
software is depicted in Figure 3.7.

Apalis T30

PTP Application

TCP/IP

FPGA
Interface

ZI Data Server

ziAPI

FPGA

PCIe

Timestamp Registers

Figure 3.7: Block diagram of the connection between PTP application and FPGA.

The PTP application sends and receives data from the FPGA via the ZI Data Server.
Both programs run concurrently on the Apalis T30 processor board and are internally con-
nected by Transmission Control Protocol (TCP)/Internet Protocol (IP).

In order to read and write data from and to the FPGA, the PTP Application has to open
a connection to the ZI Data Server. Therefore, the FPGA Interface provides the function

PTP2Boolean PTP2 FPGAItf T Init ( ) ;

which initializes and establishes a connection to the data server. Whether the connection is
established can be checked by the function
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PTP2Boolean PTP2 FPGAItf T IsConnected ( void ) ;

If the connection is no longer used anymore, the following function can be called:

void PTP2 FPGAItf T Disconnect ( void ) ;

Inside the FPGA, registers to control the behavior of the implementation are implemented
and can be externally accessed using the ZI Data Server. The registers are listed in Table
A.1 in Appendix A.2. Functions to set and get values from the registers are implemented in
the FPGA interface.

3.3.2 PPS Activation

For testing purposes, the PPS signal generated by the Ethernet controller is routed on the
PCB to the High Frequency (HF) trigger input of the FPGA. Therefore, the HF trigger input
has to be activated on the ZI web interface, in order to be able to synchronize the FPGA to
the PTP time of the Ethernet controller.

3.3.3 FPGA PPS Generation

The measurements of the timastamp register deviation of two Etzel devices desired for a PPS
signal generated by the FPGA. Thus, the 25th bit of the timestamp register, which toggles
with approximately 1 Hz2, is routed via the HF trigger output to the outside of the Etzel
device. In order to be able to use the PPS of the FPGA, the HF trigger output has to be
enabled in the web interface of the Etzel device.

3.3.4 ZI Server Integration Problem

ZI requires that timestamps are always increasing. The concept of the FPGA considers this
requirement. However, when two Etzel devices are synchronized the first time after start-
up, the slave has to set the PTP time to the PTP time of the master. If the master Etzel
device was started after the slave, the slave has to turn back the local PTP time in order
to get synchronous to the master. In this situation, the requirement of an always increasing
timestamp is violated and leads to a crash of the ZI data server. Unfortunately, the ZI data
server has to be running because the trigger input of the PPS signal of the Ethernet controller
has to be activated. A missing PPS signal means that the timestamp register of the FPGA
is never overwritten by the PTP time of the Ethernet controller.

Mitigation Strategies A concept to solve the above-mentioned problem is to force the
Etzel with the highest timestamp to be the master of the PTP synchronization. This means
that Etzel devices have to check which of the devices has the highest timestamp, before the
PTP application is started. The drawback of this concept is the development of the extra
software.

Another concept is to enable the trigger input of the PPS signal by default. In this case,
the PTP application can be started before the ZI data server. The ZI data server is started
when the Etzel devices are synchronous. The advantage of this concept is the relatively small
development effort.

2The frequency of the least significant bit of the timestamp register is 30 MHz. Thus, the 25th bit toggles
with a frequency of f25 = 30Mhz

225
= 0.894Hz, which is approximately a PPS signal.
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Chapter 4

Measurement Concept

This chapter provides an insight into the requirements for a decentralized measurement system
in respect to critical timing issues. The functionality required by ZI and their customers
is specified. ’Test points’ of the present implementation are identified in order to relate
requirements to the actual performance. In chapter 6 tests are developed based on these
fundamentals.

Problem Description

Decentralized measurement systems are based on the idea of using a local clock (pulse gen-
erator) and a local time base in each device to perform spatially distributed measurements.
This concept bears two main problems: Two physically separate clocks never run at the exact
same speed, thus resulting in a drift over time. Even if drift can be compensated perfectly,
one device will be started earlier or later than the other, resulting in a constant offset. Both
these problems are resolved in the PTP specification[1] by defining one device as master,
which all other devices (slaves) synchronize to. Hardware limitations introduce a limit to the
achievable time synchronization performance as calculated and simulated in section 2.3.4.

The different components of such a structure are depicted in figure 4.1 and described
subsequently.

Unit Marked by a blue dotted line are the basic components that perform the time syn-
chronization over Ethernet and are tested in the first part. Individual development hardware
boards[13] are referred to as units, the corresponding tests are called unit tests.

System The complete setup is marked by a red dotted line and includes per-device synchro-
nization of the local PTP time with the time used for timestamping incoming measurement
events. Thus defined is a complete measurement system.

4.1 Performance Key Figures

Measurements are split up into two parts as described in section 1.2.2. Firstly the performance
of the general PTP time synchronization is evaluated. Secondly the functionality of the final
product is verified in order to demonstrate fulfillment of all requirements. Figure 4.1 represents
an overview of a generic test setup in its complete form.
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Figure 4.1: Measurement concept: Base implementation and integration into overall setup

The basic principles on which measurements are performed in each of these two parts, are
described by the following performance key figures.

4.1.1 Base PTP Implementation (Unit)

The base PTP implementation consists of two or more development hardware boards which
are connected via Ethernet and are running a PTP software application on top of a Linux
OS.

Time-to-Lock A PTP-enabled device requires a certain amount of time after it has been
installed into a PTP network (or switched on) until it can be considered to be synchronized
to the other PTP devices.

Time Synchronization Accuracy The core feature of a PTP-enabled device is its ability
to synchronize its time register with all other PTP devices. Thus defining synchronization
accuracy. The measurable equivalent is the time offset of a device from the PTP master.

4.1.2 Integrated Measurement Setup (System)

The integrated measurement setup consists of two or more Etzel measurement devices, which
each contain the equivalent of one development hardware board each. Furthermore they
perform data acquisition and allow a user to access the data.

Time Offset Between Locally Separated Measurements The most fundamental re-
quirement for a decentralized measurement setup is the time offset between two or more
devices. The worst offset defines the synchronization accuracy of the whole system. Due to
the nature of the synchronization process, this value is fluctuating and has to be observed
continually.
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Quality of Time Synchronization The Etzel measurement device, as it is depicted in
a simplified way in figure 4.1, contains two individual clocks1. Since only the clock of the
ethernet controller is synchronized via the precision time protocol, the time that is kept by
the timestamping unit has to be updated continually. The quality of this process is of interest,
since it is performed individually per device and directly influences the accuracy mentioned
in the previous paragraph.

4.2 Requirements

The requirements for each of these indicators have mostly been defined by ZI. Where no
target was given, reasonable values were assumed.

Synchronization Accuracy The goal is to achieve a time offset between two modules
in the order of 10 ns. This accuracy is only necessary for the synchronization between the
individual time bases of the devices. With respect to actual measurements taken by the Etzel
instrument it is required to synchronize timestamps of measurement samples better than 1
µs (half the sample rate).2 Furthermore it is necessary to verify the long-term stability of the
synchronization over 24 hours.
It is not necessary to synchronize to an external absolute ’world time’ but rather ensure that
time differences between involved devices are minimal.

Time-to-Lock Since no specific requirements are given, it is assumed that Time-to-Lock
should amount to less than five minutes from a cold boot.

Quality of Time Synchronization It is imperative that timestamps are increased at all
time, in order to enforce that no multiple measurements with the same timestamp may exist.
Additionally it is beneficial to the synchronization accuracy if consecutive time increments
are as similar as possible.3 Thus preventing sudden spikes in the time scale and enabling
smooth and steady behaviour.

4.3 Implementation Testpoints

In order to measure the performance of the PTP implementation, the following methods
have been devised. They are used for either Unit or System Tests (as described in chapter 6
’Measurement Plan’).

4.3.1 Pulse-Per-Second (for Unit Tests)

The measurement of the time offset between multiple devices has to be done continually and
needs to be presented in a way that is easy to compare. The standard method for PTP

1Clock is meant as ’time keeping device’, not as ’pulse generator’.
2Although samples are taken at a sampling rate of 60 MS/s, they are initially downsampled to 469kS/s and

then timestamped. This corresponds to a sample time of 2.132 µs, resulting in a range of ±1 µs.
3The internal clock consists of a time register that is updated at each clock cycle. This means that the

evolution of the time register is inherently discontinuous. This increment value can be varied in order to
compensate for time synchronization mismatches.
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devices is by implementing a signal that is triggered every second (aptly called PPS). This
signal features a highly precise flank that represents the beginning of a new second. Thus it
displays the current time offset and can easily be compared between multiple devices. This
method applies to all measurements for the base PTP implementation directly on development
hardware and describes the synchronization accuracy.

Implementation At the core of each Ethernet controller is a time register which is updated
every 8 ns (at each 125 MHz clock cycle) by a variable increment value. If time synchroniza-
tion via PTP is activated, the increment value of a slave device is adjusted slightly by the
PTP application in order to keep the same time as reported by the master. As soon as the
nanosecond register exceeds 109 nanoseconds, three actions are performed: the nanoseconds
are set to zero, the seconds are incremented and a pulse is generated on a General Pur-
pose Input Output (GPIO) pin. This pin can be connected to a measurement device like an
oscilloscope. The process is depicted in figure 4.2 and described in detail in section 3.2.5.
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Figure 4.2: PPS signal generation

The PPS signals (generated as described above) exhibit timing behaviour as displayed in
figure 4.3.

Time
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500ms

Synchronization error

PPS generated by device 1

PPS generated by device 2

Amplitude

Figure 4.3: PPS time diagram
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4.3.2 Pulse-Per-Second (for System Tests)

A similar method to measure the offset between PPS signals (as described in chapter 4.3.1)
is used for evaluating the synchronization accuracy of a synchronized FPGA time unit. The
implementation provides an additional ’FPGA PPS’ signal that indicates the updates of the
timestamps that are used for tagging the actual measurements of the Etzel device.

Implementation The ’FPGA PPS’ is generated by the FPGA time unit each time the bit
representing 1 second of the timestsamp gets set4. The exact update rate of this register is
handled by a loop controller which calculates a timestamp increment for each clock tick. This
value is based on information about the current FPGA time and the time of the Ethernet
controller at the next PPS. The Ethernet controller is constantly adjusting its time in order
to synchronize to the PTP master. Figure 4.4 depicts the major involved components in a
PTP environment with two Etzel devices. The timing of the ’FPGA PPS’ signals is the same
as described in figure 4.3.
The ’FPGA PPS’ signal represents the current rate of the FPGA time and includes uncer-
tainties that were introduced by the additional layer of synchronization from the Ethernet
controller to the FPGA. Therefore it is expected that the time synchronization accuracy of
the FPGA is slightly worse than the Ethernet controller.
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Figure 4.4: FPGA PPS signal generation

4.3.3 Timestamp of Measurement Event (for System Tests)

A different measurement method is required to evaluate the performance of the complete
system (i.e. after inclusion of the time synchronization feature into the Etzel device). The
data acquisition unit of the device is set to take measurement samples at a rate of 469 kS/s.
Each of these samples is associated with a unique timestamp, which are compared in order

4Since this can be compared to bit 25 of a counter based on a 60 MHz clock (as described in section 3.3.3)
the period is not 1 second but rather about 0.894 s.
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to evaluate the system performance. The following methods apply for measurements in the
second phase (evaluation of the integrated measurement setup) aimed at the two performance
key figures from section 4.1.2.

� Time offset between locally separated measurements: This method is targeted at a com-
plete measurement system with multiple Etzel devices as ’devices under test’. A suitable
signal is generated and used as input to create a clearly identifiable measurement event.
This signal is simultaneously fed into all devices under test, where it is timestamped.
The difference between a timestamp from any device to the associated timestamp of
the PTP master device defines the time synchronization accuracy. Edges in the input
signal are used to find related timestamps.

� Quality of time synchronization: This method requires a complete measurement sys-
tem to function, but targets one single Etzel as device under test. The time difference
between two or more consecutive timestamps can be evaluated in order to describe the
quality of the time synchronization process. Figure 4.5 illustrates a few possible sce-
narios5. In a) the local device is perfectly synchronized with the master device and
therefore performs equal increments throughout the two displayed reference seconds.
In situation b) and c) the first local second takes longer than the reference (i.e. due
to the local clock being slower). Whereas in b) the additional increment values are
spread equally over the time left until the next second, the time difference is initially
compensated in c).
Further undesired behaviour might be sudden large increases (interrupting continuity),
the lack of time increments (hurting the ’no multiple timestamps’ requirement) or ex-
tremely varying time increments.
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    uniform increments

109 2*109

Reference time (nsec)

Local time (nsec)
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Figure 4.5: Subsecond performance of time synchronization

5Deviations from the standard ’synchronized’ case are exaggerated in order to clearly show the differences
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Chapter 5

Measurement Conditions

This chapter’s aim is to devise potential use cases for decentralized measurement setups. All
factors that may affect timing performance shall be evaluated. The influential ones will be
used to develop individual test scenarios for the measurement plan in chapter 6.
A certain amount of inaccuracy is inherent to the system, firstly because the frequency sta-
bility of each clock is not perfect, but only finitely accurate (this applies to master and slave
devices independently) and secondly because the synchronization process takes time. The
most critical influences are the actual network topology, the applied software parameters and
any environmental impacts on the behaviour of the hardware clocks.

5.1 Network Topologies

Different use cases for the final product ask for certain network topologies. The simplest
method to connect two devices is a direct (P2P) connection. The majority of applications
ask for the deployment of more than two measurement devices, thus requiring a method for
connecting many Ethernet devices (hereafter referred to as a E2E connection).

End-to-End The interconnection of multiple Ethernet hosts requires at least one central
switching point. For this device the following possibilities exist:

� Switch1

� Switch (PTP-capable)

� Hub2 (not supported by the current PTP core application)

When using any kind of multiport ethernet connector, the main problem is the introduction
of a variable time delay (jitter). This jitter can depend on the specific implementation of the
multiport device or even on the amount of network traffic. Asymmetry between the sending
and receiving path may also be introduced. All these factors lead to a reduction of the
time synchronization accuracy, since the PTP can not predict and compensate this varying
behaviour of a switch. The variable delay introduced is mainly dependent on the forwarding
method of the switch. The following methods are ordered according to the potential variable
delay they may introduce, best first.

1A network bridge operating at the data link layer
2A network hub or repeater operating at the physical layer
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1. Fragment free: This type of switch reads the first 64 bytes of every frame before for-
warding it, without performing any kind of error checking. This method should provide
the most stable and therefore most predictable behaviour.

2. Cut through: Reads frames only up to the hardware address before forwarding them.
Because this type may fall back to a ’store and forward’ type, it is considered less
predictable than variant 1.

3. Store and forward : Each frame is buffered and verified before it is forwarded. This
method depends on the actual size of the frame which varies on the message type and
therefore renders this switch relatively unpredictable.

4. Adaptive switching : Dynamically changes between 1. and 2., thus being the least pre-
dictable (in a worst case scenario).

Hubs can not be utilized because they operate in half-duplex mode only, which is not
supported by the PTP core implementation.

PTP-Capable Switches For most use cases it can be assumed that a potential customer is
willing to use network hardware that supports additional PTP features. These ’PTP-capable’
devices provide the best possible synchronization accuracy for connecting more than two PTP
devices. They can act as either a ’TC’ or ’BC’. A transparent clock measures the time that
passes between a PTP packet is recognized and forwarded by the switch. This so-called
residence time is written into a correction field available in a ’IEEE1588-2008’ message and
will be used to calculate the correct path delay. A boundary clock on the other hand acts
as PTP slave on its incoming port and as PTP master on the outgoing port. Thus creating
additional PTP segments and preventing the introduction of variable path delay (see section
2.1.2 for details).

Peer-to-Peer An alternative connection method is to link two devices directly via a single
Ethernet cable, thus eliminating the need for a switch or hub. This method is called P2P.
The drawbacks include the restriction to only two measurement devices and since only one
Ethernet port is available per device, the need for a different method to connect a host
computer to the Device Under Test (DUT). For the purposes of these measurements, a host
computer was connected via the ”Ethernet over USB” mode that is supported by default in
the current Linux kernel3.

5.2 Software Settings

The software implementation of the PTP stack provides several parameters that may influence
time synchronization performance. The two most important parameters are:

� Sync interval : The rate at which ’Sync’ PTP packets are transmitted by the PTP
master device. These messages intend to readjuste the clock rate of all PTP slave

3The Linux for Tegra (L4T) kernel which is used by default in the Toradex v2.x Board Support Package
(BSP) contains the Android Remote Network Driver Interface Specification (RNDIS) Ethernet gadget driver.
Since the BSP automatically assigns IP addresses to the host and the target device, this setup allows for a
plug and play use.
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devices according to the rate of the PTP master. Thus they aim at minimizing clock
drift between a local and a reference clock. Since the clock of each network device
is subject to local environmental influences, this adjustment has to be executed fairly
often (e.g. at least once per second).

� Delay request interval : In order to continually evaluate the offset caused by the network
path, the ’PTP offset correction method’ measures the time taken between sending a
packet and receiving a response (the so-called path delay). If the network topology
is not subject to change, the rate at which this is executed should be fairly constant
(although it may be influenced by switches as described in section 5.1).

Both of these parameters shall be evaluated, but the main focus lies on finding the optimal
sync interval with maximized time synchronization accuracy and minimized generation of
network traffic.

5.3 Oscillator Stability

Time synchronization accuracy is based on the accuracy of the pulse generator that is used to
drive time increments. The stability of oscillators is usually specified by the manufacturer[14]
in terms of:

� Short term stability (phase-noise)

� Long term stability (over the duration of many 100’000 of clock cycles or more, including
aging but excluding environmentally induced drift)

� Temperature stability (the most prominent example of environmentally induced drift)

� Aging (e.g. stability after the first year)

Phase noise describes the frequency spectrum of the oscillator and can be measured using a
spectrum analyzer.4 It is usually measured as relative power ratio compared to the carrier at
the desired clock frequency. Therefore it is specified in -dbc at 10 kHz offset from the carrier.
Long-term stability on the other hand describes the difference between the observed clock
signal and a reference clock (∆t) that builds up during a certain period of time (tmeasurement).
This observation is called drift and is usually specified in units of parts per million (ppm) as
represented in equation 5.1 and is subject to change due to aging[15].

long term stability =
∆t

tmeasurement
∗ 106 [ppm] (5.1)

E.g.: impact of drift after 1s @ 25 ppm: ∆t = 1s ∗ 25

1′000′000
= 25µs (5.2)

4An alternative perspective is the time domain, where the short term stability is referred to as jitter. In
order to create a meaningful data set, a large amount of clock periods (in the order of 1000) have to be
measured and statistically analyzed.
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Ethernet Controller Oscillator In regard to the clocks used in the final product, two
elements have to be differentiated. Firstly for basic time synchronization via the precision
time protocol, the ethernet controller is driven by a clock signal from a relatively inaccurate
crystal oscillator at 25 MHz. It is specified at a long term stability of 25 ppm, while no details
are known about short-term stability (phase noise). Temperature stability is an additional
important attribute that is not documented. Aging properties are specified at ±3 ppm in the
first year and are supposed to decrease logarithmically with time[16].
Errors introduced by clock drift (or more precisely the deviation between the exact clock of
the PTP master and the PTP slave device) are accounted for by the drift correction method
of the PTP stack. Since no value is given for temperature stability, a typical 30 ppm/◦ is
assumed. A wind gust might cause a sudden cooling down of the oscillator in the order of a
few degrees. An exemplary calculation for a cooling of 5◦ results in a drift after 1 second of
∆t = 1s ∗ 30

106
∗ 5◦ = 150µs.

Etzel Oscillator Secondly, the timestamping unit in the FPGA is driven by a relatively
accurate oscillator which is specified according to table B.22 in the appendix at section B.4.
In order to synchronize the time registers of two (or more) Etzel devices with the PTP time,
the respective clock drift has to be considered. In a worst case scenario, a drift of up to
∆t = 1s ∗ 0.5ppm = 500ns can occur on each device between two PPS events (during 1
second). This error should be compensated and the quality of this method has to be tested.

5.4 Environmental Conditions

Various environmental influences (concerning the Ethernet controller and its clock, the pro-
cessor or the network) may influence the time synchronization accuracy. The device has to
operate under the same limited environmental conditions as the Etzel (+5◦C to +40◦C).
The following influences were identified:

� Temperature differences and changes

� High ’CPU’ load

� Network traffic

� Asymmetric paths

� Hardware differences

Temperature Stability

All electrical parts feature characteristics that depend on the ambient temperature to a certain
degree. In a scenario where two Etzel devices are located in different rooms, the temperatures
may be different as well. Thus causing differing effects depending on the location. The parts
that are most affected by temperature are oscillators (as described in detail in section 5.3).
Other parts like resistors, capacitances, etc. exhibit certain dependence effects as well. They
are optimized to minimize these effects in the observed temperature range of +5◦C to +40◦C
and only influence time synchronization accuracy to a small degree. The highly integrated
circuit chips are designed to operate at least at commercial temperatures (0◦C to +70◦C) and
should therefore not exhibit any noticable temperature dependence.
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Network Traffic

Any network traffic present on the ethernet link could potentially interfere with the timely
delivery of PTP packets and therefore lead to variable delays between sending and receiving
PTP packets. Since the Etzel devices continually send their measurement results to a client
via ethernet, relatively high peak rates of external traffic have to be considered.
The synchronization of PTP devices is implemented using multicast connections (User Data-
gram Protocol (UDP) / IPv4) in order to minimize the generated traffic.

Asymmetric Paths

The precision time protocol periodically performs measurements of the delay between two
devices. It is then assumed that this so called transit delay is the same for both directions.
This is not necessarily true since asymmetric paths might be caused by network cables,
switches or even the Physical (layer) (PHY) hardware. The resulting delays may vary on
the direction of traffic. Since it is assumed that potential customers mostly use Etzel devices
as PTP master and slaves, the exact same PHY hardware will be present in the PTP signal
path. Therefore asymmetry will be neglected in further considerations.

Hardware Differences

Because all PTP devices in a network rely on one single master, this particular device should
work as precise as possible to allow for high overall system accuracy. The precise time protocol
uses a ’best master algorithm’ to determine the optimal master / slave configuration. This
theoretically allows to use a highly precise atomic or GPS driven clock to act as PTP master.
It is assumed that ZI customers would not want to invest in additional hardware, but only
use multiple Etzel devices as master and slaves.
The custom PTP software implementation allows to configure values for the clock class5, clock
accuracy6 and clock variance7.

5In a range of 0 to 255, where lowest is best. 0 shall only temporarily be used to force a device to be master
and 255 is used for slave-only devices

6Defines a list of ranges, e.g. 25-100 ns
7This is a logarithmically scaled statistical value which describes the time offset that may happen over

the duration of a sync message interval. More precisely: 28 multiplied by the logarithm of the actual PTP
standard deviation in seconds
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Chapter 6

Measurement Plan

The measurement plan describes the course of action taken to describe the characteristics and
measure the performance of the time synchronisation implementation. The goal is to create
a list of tests that covers all potential situations that may be encountered in daily use. Thus
allowing the verification of the correct behaviour of the device under test. Each test shall
be defined with regard to the concept as described in chapter 4, the setup as described in
chapter 5 and environmental conditions.

6.1 Schedule

In a first stage, the performance of the software implementation of the PTP-stack on the
underlying hardware will be examined. Development hardware was used for these tests.
After having successfully integrated the synchronization functionality into ZI’s impedance
spectroscopes, the second stage of measurements is to verify the performance of a complete
decentralized measurement setup on production ready hardware.
Accordingly the tests are split up into:

� Unit tests: The measurements in the first stage, concerning the time synchronisation
feature as modular component of the Etzel device (the system).

� System tests: Measurements occurring in the second stage and concerning the perfor-
mance of the Etzel device in a decentralized measurement setup.

A combination of a letter and a number serves as reference to each measurement (’U’ for unit
tests and ’S’ for system tests)1. A complete specification exists for each test, containing the
description of the DUT and its setup, the tested device characteristics. Furthermore informa-
tion about the measured indicator and the measurement device used as well as the duration
of the test are defined.
The following sections offer only an overview of the tests, whereas the complete test descrip-
tions can be found in the appendix.

1According to the V-Model, which represents a framework for development and validation of soft- and
hardware.
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6.1.1 Unit Tests and Performance Measurement

In order to verify the correct operation of the core implementation of PTP, a series of tests has
been devised. The goal is to emulate situations of high stress in order to find the constraints
under which the device still works as intended. Thus verifying that the DUT will function
correctly under working conditions.
For all these tests, two development boards are connected via ethernet and the PTP-stack
application is executed to enable time synchronization. Depending on the individual test,
different device characteristics are assessed. These characteristics consist of synchronization
accuracy and time to synchronization lock.
The common indicator that can be measured and by which the device characteristics are de-
termined, is the time difference of the PPS signal between (at least) two devices. This value
is statistically evaluated in order to portray the dynamic behaviour of the synchronization
process.

Test Setup An example setup for two development boards is shown in figure 6.1. When
developing and adjusting parameters, it is very convenient to have the PPS output on a
oscilloscope for getting a quick impression of the system behaviour. In order to produce
significant results, it is necessary to measure the statistical distribution of the time offset.

Statistical Evaluation / Histogram:
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Ethernet
Controller

I210

PTP-Stack

Synchronized
Clock
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Figure 6.1: Generic time offset (PPS) measurement setup
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Measurement Plan for Unit Tests The following table 6.1 contains an overview of the
scheduled tests. Complete test specifications can be found in the appendix under B.1.

Reference Description

U0 Time-to-Lock

U1 Time offset (PPS)

U2 Time offset (PPS) long-term

U3 Bandwidth for synchronization packets vs. accuracy

U4 Network load vs. accuracy

U5 CPU load vs. accuracy

U6 Temperature vs. accuracy

U7 Cable length vs. accuracy

U8 More than two devices (with and without a PTP-capable switch)

Table 6.1: Short measurement descriptions for unit tests of development boards

6.1.2 System Tests Etzel

In order to establish a decentralized measurement setup, all connected measurement devices
have to operate on a common time base. Although the time bases of the Ethernet controllers
of all devices are synchronized, the data acquisition unit of each device runs on an individual
time. Therefore it is necessary to continually readjust these time registers to the respective
PTP master clock. The implementation details concerning integration of the PTP synchro-
nization functionality into the measurement devices of ZI (by the name of Etzel) can be found
in section 2.3 ’Integration into Etzel’.

Since Etzel uses the same hardware as the previously presented PTP implementation (i.e.
the same CPU, Media Access Control (layer) (MAC)/PHY controller and communication
via Peripheral Component Interconnect Express (PCIe) bus), it is assumed that the same
limitations apply as they were examined in chapter 6.1.1. Therefore considerations concerning
behaviour under heavy computational load (CPU), high network traffic or environmental
conditions still apply.

The goal of the following measurements is to verify the performance of a model decen-
tralized measurement setup with multiple interconnected Etzel devices. According to the
V-Model, these tests can be categorized as system testing.

Test Setup The main use of Etzel devices is to perform impedance spectroscopy[17], thus
measuring amplitude and phase of multiple input frequencies. In order to generate unambigu-
ous output events at each Etzel, a sine wave is fed into the input signal port of each device
simultaneously. It is then periodically enabled and disabled, which results in a recorded event
on each toggle. These events are associated with the current time by means of a timestamp.
By comparing the event timestamps between all involved Etzels, the deviation from the com-
mon time base can be shown for each device. The setup of this verification test is shown in
figure 6.2.

Potential Problems A fundamental difficulty that arises when synchronizing two physi-
cally separate devices is the granularity of synchronization steps. A transfer of the complete
time register is expensive in terms of communication cost and can therefore not be executed
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Figure 6.2: Final product verification setup

at every time update (i.e. every clock cycle). Instead the applied method is to rely on highly
accurate periodic pulses that are generated every second and indicate the validity of a pre-
viously transmitted timestamp. In-between these accurate seconds, the task is to adjust the
granular time update steps as evenly as possible. The desired output of such a time updating
mechanism is a steadily increasing time, where the increment of each time update is opti-
mally the same. Furthermore it is essential that the time shall never be decreased, therefore
ensuring that no multiple samples can be measured at the same time.

In order to verify the quality of the synchronized time update mechanism, it is important
to generate measurement events that occur in very short intervals. Additionally testing should
occur over a long period of time to ensure that no inconsistencies occur.

Measurement Plan for System Tests

The following tables describe the tests that have been employed to measure the performance
of the final Etzel hard- and software. The complete descriptions can be found in the appendix
under B.2.

Reference Description

S0 Etzel time synchronization

S1 Verification of time increments

S2 Synchronized measurement events

S3 Long-term consistency of time increments

S4 Long-term evaluation of synchronized measurement events

Table 6.2: Short measurement descriptions for system tests of Etzel devices
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Chapter 7

Results

The results of the measurements are listed and interpreted in this chapter. They have been
performed according to the measurement plan in chapter 6.

Most tests consisted of multiple measurements of one setup with two or more DUT, which
were analyzed with respect to certain synchronization accuracy parameters. These parame-
ters were measured during 30 minutes up to 24 hours while subjecting the DUT to specific
configurations and environmental conditions. The exact test specifications and details to the
specific setup can be found in the appendix under B.1 (unit tests) and B.2 (system tests). The
used measurement devices and their configuration are described in detail in the appendix un-
der B.3. The results of all measurements are listed below and an interpretation with respect to
our expectation is given. Certain less significant secondary measurements have been omitted
in this chapter but can be found in the appendix next to the respective test specification.

7.1 Unit Tests

Most unit test measurements are based on comparing the time offset of a PTP slave de-
vice from the PTP master and therefore only generate one measurement event per second1.
Therefore the sample size mentioned in U1 to U8 corresponds to the time in seconds that each
measurement has taken. In order to provide a visual aid for the reader, result plots contain a
dashed line that marks the 0 ns synchronization accuracy (thus perfect sync. between master
and slave). Certain figures also include a dotted line for ±5 ns and a dash-dot line for ±10
ns.

7.1.1 U0 - Time-to-Lock

In order to give an overview of the behaviour of a PTP device upon (re)boot, a single scenario
from power-on to ’synchronization lock’ is described first. In a second stage, a test series over
100 reboots was executed to statistically evaluate the time needed to achieve synchronization
lock. This series resulted i) in an evaluation of the time to synchronization lock and ii) in a
representation of the accuracy of the initial PPS pulses.

1This interval originates from the PPS signal, which is generated once per second and acts as common time
denominator
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Overview The behaviour of the time offset from power-on until synchronization lock is
described in figure 7.1. After about 30 seconds, the operating system has initialized the
Ethernet driver and started the PTP application (which furthermore continually executes
methods to verify and regulate the synchronization to the PTP master). The PTP activity
is indicated by the appearance of the PPS signal in figure 7.1a. In the initial unsynchronized
state, the time offset from master amounts to ca. 220 ms.2 Further important events are the
drift compensation at second 46 (red circle), which improves the accuracy to about 620 ns.
The offset compensation at second 53 (green circle), which leads to an accuracy of less than
±10 ns.
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Figure 7.1: Initial time offset measurement

Time to Synchronization Lock Synchronization lock has been defined as the first oc-
curence of five subsequent measurements which are more accurate than ±10 ns.3 The synchro-

2This value was present in the measurement at hand, but might be any time between 0 and 1 second. It
represents the time offset between the driver initialization of the two compared DUT modulo 1 second. Since
the devices are powered on without exact synchronization, this value is random.

3This is exemplified in figure 7.1 by the cyan circle at second 58.
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nization lock time of the system was measured during 100 reboots. The observed statistical
distribution of the synchronization lock time is given in table 7.1 and depicted in figure 7.2.

Time-to-Lock [s]
Sample size

Mean Std. deviation Min Max

60.56 4.243 52 75 100

Table 7.1: Measurement results - Time-to-Lock
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Figure 7.2: Results histogram - Time-to-Lock

Interpretation

The Time-to-Lock is mainly determined by the Linux booting process and the time it takes
until the first rough offset correction takes place. The most amount of time is spent during
booting (30 seconds) which we assume to be unchangeable. The second most amount of
time passes while waiting for the first ’DelayReq’ packet4, which provides offset correction.
This interval could be modified to allow quicker lock in times but would result in additional
network traffic.

7.1.2 U1 - Time Offset (PPS)

The following measurements (U1 to U8) all describe the settled state of the system (i.e. at
least 2 minutes after power-up, thus synchronization lock has been achieved).
In test U1 the synchronization accuracy is measured over two hours in a configuration with
two PTP devices connected via P2P. The DUT were placed in a room without any particular
temperature stabilization.

4see also section 5.2 and the measurement ’U3 - Bandwidth for Synchronization Packets vs. Accuracy’ at
section 7.1.4
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Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

-0.499 4.181 -13.527 13.527 7214

Table 7.2: Measurement results - Time offset (PPS)

Figure 7.3: Results histogram - Distribution PPS pulses over 2 hours

Interpretation

The measurement results as described in table 7.2 and depicted in figure 7.3 appear to be
normally distributed around a mean value close to 0 ns. The yellow markers represent ±10ns.
In order to confirm that the measured data are truly normally distributed, the probability for a
synchronization error of 13.527 ns under the assumption of a normal distribution with a mean
value and standard deviation according to table 7.2 calculates to Φ(X > 13.527) = 3.43∗10−4.
The probability of the maximum occurring in the actual measurement is 1

SampleSize = 1.39−4.
The observed probability differs from the calculated probability by a factor of 2.47. This large
error of magnitude is presumably due to the low resolution of bins in the histogram values
and the calculation not significant.

7.1.3 U2 - Time Offset (PPS) Long-Term

The synchronization accuracy has been measured over a period of 24 hours in order to verify
that there are no outliers in long-term operation. The measurement conditions were equal to
U1, with the exception of the duration.

Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

1.396 3.688 -11.523 14.529 86749

Table 7.3: Measurement results - Time offset (PPS) Long-Term
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Figure 7.4: Results histogram - Distribution PPS pulses over 24 hours

Interpretation

The measurement results as described in table 7.3 and depicted in figure 7.4 appear to be
normally distributed. Compared to the results of the two hour measurement in U1, the mean
value differs by 1.9 ns, whereas the standard deviation varies only by about 10 percent. Most
importantly the maximum values are almost exactly the same and below an absolute value
of 15 ns. No outlier was detected in the 24 hours measurement period.

7.1.4 U3 - Bandwidth for Synchronization Packets vs. Accuracy

The IEEE1588-2008 standard[1] allows for a variety of different data rates for synchronization
packets (so called ’Sync’ and ’DelayReq’ packets as described in section 5.2). These rates have
an influence on the synchronization accuracy since they define the frequency with which time
errors can be corrected.
The PTP application allows the adjustment of the different data rates over a wide range,
but it has been discovered that only a limited range yields a measurable difference in traffic.
Traffic measurements are listed right next to the software settings in table 7.4.

Software settings Meas. traffic Synchronization accuracy Sample

Sync DelayReq Mean5 Mean Mean Std. Min Max size
[pkt/s] [pkt/s] [pkt/s] [B/s] [ns] dev. [ns] [ns] [ns]

1/2 1/16 0.5 120 -28.335 16.787 -78.657 82.665 1877

1 1/16 2.5 190 -10.258 8.202 -34.569 17.535 1818

2 1/16 4.5 330 -3.362 5.090 -18.537 11.523 1828

4 1/16 10 800 0.835 3.665 -8.517 12.525 2110

8 1/16 20 1500 2.493 3.254 -6.513 11.523 1809

32 1/16 20 1500 2.780 3.412 -5.511 13.527 2110

64 1/16 20 1500 2.373 3.275 -8.517 11.523 1874

128 1/16 20 1500 2.895 3.566 -5.511 11.523 1820

256 1/16 20 1500 3.011 3.488 -6.513 11.523 1834

1024 1/16 21 1510 5.072 3.192 -3.507 12.525 1814

1024 1/2 21 1550 4.854 3.617 -5.511 13.527 1867

1024 1 22 1600 4.896 3.525 -4.509 15.531 2061

1024 1024 31 2200 4.3426 3.377 -7.515 13.527 1933

Table 7.4: Measurement results - Bandwidth for synchronization packets vs. accuracy
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The top 7 data sets from table 7.4 (marked in yellow) are plotted in figure 7.5 since these
settings appear to influence the synchronization error the most. They display the achievable
synchronization accuracy when varying the rate of Sync packets, while maintaining a fixed
rate of DelayReq packets at 1

16 packets/s.
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Figure 7.5: Results plot - Bandwidth for synchronization packets vs. accuracy

The method used for PTP message transport was ’PTP over UDP over IEEE802.3 Eth-
ernet’. For comparison the packet sizes of the PTP packets are given in table 7.5.

Packet type Size [B]

Announce 106

Sync 86

Follow-Up 86

Delay Request 86

Delay Response 96

Table 7.5: PTP packet sizes

Interpretation During standard operation (after lock-in and without any changes in the
network topology) the synchronization accuracy appears to mostly depend on the rate of Sync
packets. The optimum synchronization accuracy was found to be achieved when using a rate
of 4 Sync packets per second and was then set as default for the following measurements. The
rate of DelayReq packets does not noticeably influence the accuracy as expected and is thus
set to 1/16 packets per second which is sufficient to react to changes in the network topology

5Due to the synchronization method being set to the ’two-step’ mechanism, a Follow-up packet is auto-
matically sent shortly after each Sync packet. Every DelayReq packet is answered by a DelayResp. Announce
packets are sent at a fixed rate of 1 packet per second and are used to coordinate the synchronization hierarchy.
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at a comparable rate as the lock-in time at boot. The bandwidth occupied in this setting is
as low as 800 B/s.
It has been discovered that the maximum rate of synchronization packets seems to be limited
at 8 packets per second. This might be due to a limitation of the PTP stack application
which restricts the maximum amount of events that can be handled per second.

7.1.5 U4 - Network Load vs. Accuracy

The influence of externally produced traffic, which takes place on the same network as the
PTP communication, has been measured. The results are listed in table 7.6 and are plotted
in figure 7.6. For comparison the maximum achievable data rate has been measured between
35 and 39 MiB/s (in a ’P2P’ configuration, depending on the device).

Network traffic Synchronization accuracy [ns]
Sample size

[MiB/s] Mean Std. deviation Min Max

0 -0.246 3.555 -9.519 8.517 1955

1 1.108 3.420 -8.517 12.525 1909

5 1.5536 3.816 -11.523 13.527 1920

10 1.795 4.446 -36.573 13.527 1851

15 0.522 7.474 -98.697 29.559 1820

20 1.297 8.946 -73.647 46.593 2555

25 -1.5689 16.343 -128.76 132.77 2208

30 2.6218 31.259 -215.93 240.98 1932

Table 7.6: Measurement results - Network load vs. accuracy
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Figure 7.6: Results plot - Network load vs. accuracy
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Interpretation Network traffic below 10 MiB/s barely shows any influence on the synchro-
nization accuracy, whereas the standard deviation doubles from 20 to 25 MiB/s and again
from 25 to 30 MiB/s of traffic. A fit to the power of 5.58 has been calculated to the ’mean +
standard deviation’ and resulted in a Root Mean Square Error (RMSE) of 1.416.
In conclusion the influence of external network traffic on the synchronization accuracy is as-
sumed to be negligible up to 10 MiB/s, since the mean plus standard deviation does not
exceed 5 ns.

7.1.6 U5 - CPU Load vs. Accuracy

The influence of limited CPU resources due to the processor being utilized by ZI applications
has been simulated. The results are listed in table 7.7. The plots for both DUT under stress
are depicted in figure 7.7a and for only one DUT being stressed in figure 7.7b.

CPU load [%] Synchronization accuracy [ns]
Sample size

PTP slave PTP master Mean Std. deviation Min Max

0 0 -0.622 3.505 -9.519 6.513 959

30 30 -1.569 3.569 -9.519 7.515 1112

50 50 -1.560 3.603 -11.523 8.517 1502

80 80 -1.681 3.936 -14.529 7.515 1009

90 90 -2.886 4.307 -13.527 7.515 1017

100 100 -1.842 5.071 -15.531 11.523 1217

0 100 -2.807 4.893 -18.537 9.519 1133

100 0 -2.473 3.959 -11.523 7.515 1025

Table 7.7: Measurement results - CPU load vs. accuracy
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Figure 7.7: Results plot - CPU load vs. accuracy

Interpretation The worst performance was measured when subjecting the PTP master to
100% CPU load, resulting in a deterioration of the synchronization accuracy mean of -2.2
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ns and the standard deviation of 1.4 ns. A slightly better performance was achieved when
stressing only the PTP slave device, or both devices simultaneously. The application of 30% to
80% CPU load on both devices leads to a unchanged standard deviation and slightly elevated
mean synchronization accuracy by about 1 ns.
Since it is assumed that generally 20% or more CPU ressources are available, and the CPU
overhead generated by the PTP application is less than 1%, the influence of the CPU load is
deemed negligible.

7.1.7 U6 - Temperature vs. Accuracy

Changes in the surrounding temperature may affect the synchronization accuracy of the DUT
noticeably. Tests have been conducted for i) a single DUT under stabilized temperature con-
ditions and ii) both devices stabilized. The reference measurement at the top of table 7.8 and
the following five measurements, where the PTP master device was kept at a stable temper-
ature, are depicted in figure 7.8. Due to additional noise caused by the climatic chamber, the
setup of the oscilloscope had to be altered for this test. Details to the configuration can be
found in the appendix under B.3.

Temperature Synchronization accuracy [ns]
Sample size

Master [◦C] Slave [◦C] Mean Std. deviation Min Max

25* (Reference) -0.117 3.522 -9.519 10.521 2169

5 (stabilized) 24* -5.059 3.532 -15.531 5.511 2920

10 (stabilized) 24* -4.720 3.586 -14.482 9.799 3345

20 (stabilized) 22* -2.947 4.109 -15.331 8.717 2088

30 (stabilized) 24* -2.946 3.514 -13.126 7.315 2205

40 (stabilized) 24* -2.979 3.704 -13.928 7.114 1810

5 (stabilized) 5 (stabilized) -5.206 3.636 -14.529 4.509 2501

25 (stabilized) 25 (stabilized) -4.314 3.388 -13.527 3.507 1815

40 (stabilized) 40 (stabilized) -4.477 3.523 -13.527 4.509 1919

Table 7.8: Measurement results - Temperature vs. accuracy. Temperatures marked with *
indicate approximate room temperatures without the influence of a climatic chamber.
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Figure 7.8: Results plot - Temperature vs. accuracy

A linear regression was applied to the measured mean synchronization accuracy in order
to determine the temperature coefficient of the regulated system. It was calculated using the

least squares method and resulted in 0.064 ns◦C =
0.064 ns

◦C
1s ∗ 106 = 64 ∗ 10−6 ppm

◦C .

Interpretation Subjecting both of the DUT to static ambient temperatures did not have a
noticeable effect on the standard deviation of the synchronization accuracy. When considering
the measurements with only the master device stabilized, it can be observed that the mean
value differs by -3 to -5 ns to the reference depending on the temperature setting. This
observation is reflected in a positive temperature coefficient of the system with respect to the
synchronization accuracy.
In contrast the measurements with both devices stabilized feature a consistently low mean
synchronization accuracy of -4.3 to -5.2 ns. Since the clocks on both devices are now subjected
to the same conditions, it would be expected that both exhibit the same drift behaviour and
thus the accuracy mean would be around ±0.2 ns. Since this is not the case, it is assumed
that other characteristics of the measurement setup have a noticeable effect on the mean value
of the synchronization accuracy. Possible causes include variations in the temperature due to
the control loop of the climatic chamber and electronic interference generated by the climatic
chamber when switching relays.
In summary, the observed deviations of the synchronization accuracy for fixed temperatures
are below 5 ns and thus relatively small.

Temperature Ramp An additional measurement was performed to test the effect of tem-
perature changes over time on the synchronization accuracy. The master device was subjected
to a temperature ramp from 5 to 40 ◦C over 396 seconds, while the slave was kept at room
temperature. The observed temperature rise rate amounts to 5.3

◦C
min , which is close to the

specified6 4.5
◦C
min . The results described in table 7.9 show a minimal deviation from the

reference synchronization accuracy.

6As described in the specifications of the climatic chamber in the appendix B.3.2
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Temperature Synchronization accuracy [ns]
Sample size

Master [◦C] Slave [◦C] Mean Std. deviation Min Max

25* (Reference) -0.117 3.522 -9.519 10.521 2169

5 to 40 ramp 24* -1.840 3.448 -11.523 6.5133 396

Table 7.9: Measurement results - Variable Temperature vs. accuracy.

7.1.8 U7 - Cable Length vs. Accuracy

A critical element on the signal path between PTP master and slave is the Ethernet cable.
The influence of the utilization of different types and lengths of cables has been evaluated in
table 7.10 and figure 7.9.

Cable type Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

1 m Cat5e 2.721 4.166 -10.521 14.529 4631

1.5 m Cat5 ref7 -0.246 3.555 -9.519 8.517 1955

1.5 m Cat5 -2.056 3.561 -11.523 7.515 1926

10 m Cat5 -0.376 4.142 -14.529 10.521 2304

40 m Cat6 -3.1125 4.418 -28.557 24.549 1865

Table 7.10: Measurement results - Cable length & type vs. accuracy
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Figure 7.9: Results plot - Cable length & type vs. accuracy

Interpretation Observed are variations of the synchronization accuracy mean of -2.9 to
+3.0 ns and the standard deviation of 0 to 0.9 ns compared to a reference measurement. No
clear trend is recognizable in respect to cable length or cable category.

7The cable described as ’1.5m Cat5 ref’ was used for all other unit tests.
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7.1.9 U8 - More than Two Devices (with and without a PTP-Capable
Switch)

In order to identify the influence of a non-PTP-capable switch on a setup with multiple DUT,
initial reference measurements were performed with multiple devices connected to a non-PTP-
capable switch. The setup was then altered by replacing the default Ethernet switch8 by a
PTP-capable Hirschmann RSP35 switch9. Since the RSP35 switch supports both BC and
TC modes for structuring the PTP network (see section 5.1 for details), both options were
used as individual testcases. The results are listed in table 7.11 and plotted for each testcase
in figure 7.10. The network setup in all measurements can be categorized as E2E with one
single switching point.

Switch Network Synchronization accuracy [ns]
Sample size

Topology Mean Std. deviation Min Max

a) 2 Apalis + PC10 -28.717 78.552 -289.58 235.47 1824
Zyxel 2 Apalis -28.181 70.586 -245.49 229.46 1989

GS-108B 3 Apalis -40.757 72.807 -269.54 227.45 1806
No PTP 4 Apalis -42.356 70.373 -307.62 193.39 1874

b) 2 Apalis + PC11 -5.801 28.212 -79.158 89.178 2528
Hirschmann 2 Apalis -1.595 25.12 -69.138 69.138 2046

RSP35 3 Apalis -9.965 32.089 -101.2 77.154 2412
PTP: TC 4 Apalis -16.663 27.706 -167.33 69.138 1951

c) 2 Apalis + PC12 1.7982 42.124 -127.25 159.32 1870
Hirschmann 2 Apalis 15.939 30.601 -65.13 105.21 3361

RSP35 3 Apalis 21.347 34.206 -91.182 121.24 1810
PTP: BC 4 Apalis 18.686 32.623 -81.162 119.24 2016

Table 7.11: Measurement results - More than two devices (with and without a PTP-capable
switch)

8Zyxel GS-108B. Specifications are listed in the appendix B.4.3. Transmission method: Store-and-Forward
9Hirschmann RSP35. Specifications are listed in the appendix B.4.4

10Actively capturing with wireshark
11Connected to the Web-GUI of the switch
12Connected to the Web-GUI of the switch
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Figure 7.10: Results plot - More than two devices (with and without a PTP-capable switch)

Interpretation Connecting a PC for control and evaluation purposes did not significantly
deteriorate the synchronization accuracy, as can be seen when comparing the measurements
of ’2 Apalis + PC’ against ’2 Apalis’ for each of the network configurations.
Using a PTP-switch over a generic Ethernet switch improves the synchronization accuracy
by approximately a factor 2 in respect to mean value and standard deviation. The choice of
PTP-mode (TC or BC) does not noticeably influence synchronization accuracy, although TC
mode appears to perform slightly better. The introduction of 3 or 4 Apalis devices seems to
not significantly influence the performance.
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7.2 System Tests

In order to validate the performance of the time synchronization on the final hardware and ver-
ify compliance with specific requirements from ZI (e.g. monotonically increasing timestamps),
additional indicators were introduced. In addition to the PPS signal from the Ethernet con-
troller, a PPS signal is available from the synchronized FPGA time unit. Moreover, the ZI
data server software allows access to the recorded data including timestamps for measure-
ments.
Tests have been performed to verify the quality of the time synchronization process and its
influence on the accuracy of synchronous measurements. All tests were conducted under nom-
inal environmental conditions. The gathered data is listed in tables and partially plotted. In
order to provide a visual aid for the reader, result plots contain a dashed line that marks the
0 ns synchronization accuracy and a dotted line for ±TS

13.

7.2.1 S0 - Etzel Time Synchronization

In order to evaluate the overall time synchronization performance of a distributed Etzel
setup, the first step was to measure the characteristics of the timestamps on a single device.
Furthermore the PTP synchronization accuracy between two Etzels was measured in a similar
fashion to the PPS measurements that were used in most unit tests.

Sub-Second Time Update Performance

The quality of the progression of timestamps on a single Etzel device was evaluated in a setup
with two devices connected and synchronized via Ethernet. The data generated by a single
device includes one timestamp per sampling period. The difference between two consecutive
timestamps is referred to as ’time increment’. The evaluation of the time increments is given
in table 7.12. A single measurement run consists of two rows in the table, describing the two
involved Etzel devices. In all cases ’dev107’ acted as PTP master and ’dev77’ as PTP slave.

13TS is the sampling period of the Etzel ADC and amounts to TS = 1
469kS

= 2.132µs
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Network Etzel Time increments [ns]
Sample size

configuration device14 Mean Std. dev. Min Max

dev107 (M) 8533.5 1.7 8500.0 8550.0 2262448
P2P

dev77 (S) 8533.5 1.6 8500.0 8550.0 2262448

P2P
dev107 (M) 8533.5 1.7 8500.0 8550.0 1810490

dev77 (S) 8533.5 1.6 8500.0 8550.0 1810490

P2P
dev107 (M) 8533.5 1.7 8516.7 8550.0 1623528

dev77 (S) 8533.5 1.6 8516.7 8566.7 1623528

P2P
dev107 (M) 8533.5 1.7 8516.7 8550.0 2185665

dev77 (S) 8533.5 1.6 8516.7 8566.7 2185665

P2P
dev107 (M) 8533.5 1.7 8516.7 8550.0 970473

dev77 (S) 8533.5 1.6 8516.7 8550.0 970473

dev107 (M) 8533.5 1.8 8500.0 8550.0 3935390
E2E PTP

dev77 (S) 8533.5 1.6 8433.3 8633.3 3935390

dev107 (M) 8533.5 1.7 8516.7 8550.0 2522846
E2E

dev77 (S) 9043.0 38405.0 8250.0 27222000.0 2522846

E2E
dev107 (M) 8533.5 1.7 8516.7 8550.0 3187771

dev77 (S) 8865.9 29004.0 8133.3 13705000.0 3187771

E2E
dev107 (M) 8533.5 1.7 8516.7 8550.0 1250585

dev77 (S) 10381.0 75450.0 8383.3 16973000.0 1250585

E2E
dev107 (M) 8533.5 1.7 8516.7 8550.0 745292

dev77 (S) 10032.0 66608.0 8483.3 9199100.0 745292

E2E
dev107 (M) 8533.5 1.7 8516.7 8550.0 1443623

dev77 (S) 8961.8 30715.0 8216.7 7654500.0 1443623

Table 7.12: Measurement results - Sub-second time increments

The behaviour of the time increments of one specific measurement in a ’E2E PTP’ envi-
ronment with a PTP switch is depicted in figure 7.11. The chosen measurement is marked in
orange in table 7.12. The two plots on the top describe the Etzel master (dev107) and the
two plots on the bottom the slave (dev77). On the left the progress of the time increments is
depicted in the time domain (time increments vs. timestamps). On the right the distribution
of time increment values is given. The y-axis is logarithmically scaled. Similar plots of a ’P2P’
and ’E2E PTP’ measurement (marked in yellow in table B.5) can be found in the appendix
B.2.1.

14M = PTP master, S = PTP slave.
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Figure 7.11: Results plot - Sub-second time increments for a chosen E2E PTP measurement
(top: PTP master, bottom: PTP slave)

Interpretation The results depicted in figure 7.11 show the influence of the time synchro-
nization method on the time increments, as the time increments are not constant. The PTP
master (top plots) shows the occurrence of three discrete time increment values since the
FPGA has to synchronize to the Ethernet controller. The PTP slave (bottom plots) on the
other hand shows a higher degree of variability of discrete increment values. The reason for
this behaviour is the additional noise to the time synchronization, that stems from the com-
munications channel.
The following considerations regard the complete set of measurements with respect to time
increments as given in table 7.12. The measurements in the P2P network configuration
show the best possible performance with very consistent time increments of 8.533 µs15. The
fact that the standard deviation of the time increments is smaller for the PTP slave than for
the PTP master might seem wrong at first glance. Since the PTP master shows a standard
deviation of 1.7 ns, this is a base uncertainty for the time synchronization which only gets
worse when synchronizing to the PTP slave due to the varying nature of the communications
channel. To reduce the standard deviation, the slave performs moving average filtering on
the time error and thus is able to suppress high frequency noise. This observation is also
confirmed by simulations (see chapter 2.3.4).

15The time increment period of 8.533 µs for the measurement data is generated due to limited bandwidth
of the internal data server on an Etzel device. The internal rate of 60MHz

128
= 469kSps is decimated by 4 and

thus results in 117 kHz and a period of 8.533 µs. Ultimately the period of 8.533 µs can only be observed in the
output data, but in order to consider possible future devices without the bandwidth restriction, the original
sampling rate of 2.132 µs has to be taken into account.
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The ’E2E’ configuration using a PTP switch exhibits a standard deviation of 1.6 to
1.8 ns which is as expected. The performance of time increments is comparable to the ’P2P’
configuration, whereas the extreme values are slightly worse (< 1%).
When using a generic ’E2E’ (Non-PTP) switch, the master device exhibits very similar
behaviour as described above, but the slave Etzel performs much worse. The large maximum
time increments stem from missing fragments of measurement data from the slave device.
This behaviour was only observed when using a Non-PTP switch and is described in the
appendix B.2.3.

Synchronization Accuracy

In order to expand the evaluation of time synchronization accuracy from one Etzel device
to two synchronized devices, the PPS pulse generated by the FPGA was measured. These
measurements were performed during the previous ’sub-second time update performance’
tests and the results are listed in table 7.13. They are furthermore depicted in figure 7.12
for the cases ’P2P’ and ’E2E PTP’, which are the most important for potential use cases.
The measurement of PPS signals is independent from the data server output and provides a
means of evaluating the synchronization accuracy of the time stamp unit in the FPGAs.
In unit tests ’U1’ to ’U8’, the synchronization accuracy was measured by comparing the
’Ethernet PPS’ signal from the Ethernet controller of the PTP slave to that of the PTP
master. A similar PPS signal is generated by the timestamp unit in the FPGA (as defined in
section 4.3); it is referred to as ’FPGA PPS’.
The two measurements ’FPGA PPS’ and Ethernet PPS’ were performed under comparable
conditions but not concurrently. Therefore they do not represent exactly the same situation.

Network Input Synchronization accuracy (PPS) [ns]
Sample size

Configuration PPS Mean Std. dev. Min Max

P2P
Ethernet Ctl. -5.703 6.049 -21.343 9.719 393

FPGA -1.690 12.104 –42.685 55.11 3751

E2E PTP
Ethernet Ctl. 38.989 33.136 -259.52 331.66 4836

FPGA -3.669 39.179 -213.93 198.9 3138

Table 7.13: Measurement results - Synchronization accuracy depending on network configu-
ration

Interpretation In a P2P network configuration, the ’Ethernet PPS’ shows a time synchro-
nization behaviour as expected from unit test ’U1 - Time Offset (PPS)’ with two Apalis boards
in the same configuration. The only difference is the higher mean value in the measurement
at hand, which might be due to the relatively low sample size of 393 samples. Comparing the
’FPGA PPS’ in the same configuration, the standard deviation is worse by an additional 6
ns.
In a ’E2E PTP’ configuration the measurement of the ’Ethernet Controller PPS’ shows a
mean value that is unexpectedly far-off zero. From the results of ’U8’ we would expect a
mean value of less than 2 ns, instead we observe 39 ns. It is assumed that this divergence
is due to a fault in the measurement setup. Asymmetric paths may also be contributors to
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Figure 7.12: Results plot - Synchronization accuracy depending on network configuration

shifted mean values. When neglecting the mean value, the difference in standard deviation
between ’FPGA PPS’ and ’Ethernet Controller PPS’ is again about 6 ns.

7.2.2 S1 - Verification of Time Increments

The verification of the time increments in respect to ZIs requirements is based on the previous
results in table 7.12. Due to the fact that the minimum time increment is positive in all
measurements, the requirement for monotonically increasing timestamps is fulfilled. Therefore
the uniqueness of the timestamp for each sample on one device is given as well. It has to be
noted that these measurements only describe the locked-in state of the measurement setup.
Therefore possible negative increments during startup are not considered here.

83



0 1 2 3 4

x 10
6

8.5

8.52

8.54

8.56
x 10

−6
Overall data (=3935391 samples)

        dev107 − PTP Master

Measurement Samples

T
im

e 
In

cr
em

en
ts

 (
s)

0 1 2 3 4

x 10
6

8.4

8.5

8.6

8.7

8.8
x 10

−6
Overall data (=3936195 samples)

        dev77 − PTP Slave

Measurement Samples

T
im

e 
In

cr
em

en
ts

 (
s)

0 5 10 15

x 10
4

8.5

8.52

8.54

8.56
x 10

−6
1 second (=117186 samples)
        dev107 − PTP Master

Measurement Samples

0 5 10 15

x 10
4

8.53

8.54

8.55

8.56
x 10

−6
1 second (=117186 samples)

        dev17 − PTP Slave

Measurement Samples

0 2000 4000 6000
8.5

8.52

8.54

8.56
x 10

−6
5000 samples

        dev107 − PTP Master

Measurement Samples

0 2000 4000 6000
8.53

8.54

8.55

8.56
x 10

−6
5000 samples

        dev77 − PTP Slave

Measurement Samples

Figure 7.13: Results plot - Quality of time increments in a chosen ’E2E PTP’ measurement.
Top: PTP Master (dev107). Bottom: PTP Slave (dev77)

A visual inspection of time increment quality16 for a ’E2E PTP’ measurement was per-
formed based on figure 7.13. The top row represents the time increments observed on the
PTP master device, whereas the bottom row corresponds to the PTP slave device. The
’overview plot’ on the very left shows the occurrence of the discrete time increment values
and the effect of the loop controller. In the middle the time increment behaviour during 1
second is depicted. Most of the time the increments toggle between two discrete values. This
is also represented in the figure to the very right during the first 5000 samples. The difference
between the possible time increment values is 16.67 ns which corresponds to the smallest
possible difference of increments between two samples. It stems from the clock period of the
Etzel device of 1

60MHz = 16.67ns.
These observations satisfy the demand for ’evenly distributed’ time increments and confirm
the expected function of the loop controller according to the implementation.

7.2.3 S2 - Synchronized Measurement Events

The core feature of the synchronization of Etzel devices is the ability to perform synchronous
measurements. Measurement events are generated periodically and cause a rising or falling
edge in the measurement data over approximately 5 timestamps. In order to discern such
events as clearly as possible, the recorded data is subjected to signal processing, as described
in the appendix B.2.3. The difference between the timestamps generated by two Etzel devices,
measuring the same event, is referred to as ’measurement event error’. The same measure-
ments as in section 7.2.1 (S0 - Etzel time synchronization) were evaluated and the results are
listed in table 7.14. The measurement event error of these measurements is depicted in figure
7.14 for the three network configurations.

16A representation of the same data is also given in figure 7.11 including a histogram.
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Network Measurement event error [ns] Sample No. of Duration Error

config. Mean Std. dev. Min Max size17 edges [s] > TS
18

P2P 111.1 625.6 -1449.2 1934.4 10122212 723 19.307 0

P2P 124.5 667.3 -1919.0 1978.0 8100146 582 15.450 0

P2P 59.0 658.5 -1683.2 1848.0 7263673 521 13.854 0

P2P 96.7 631.4 -1634.3 1859.0 9778685 699 18.651 0

P2P 92.8 632.5 -1391.3 1709.5 4341899 308 8.282 0

E2E PTP 92.7 693.6 -1810.6 2035.7 4026593 291 7.680 0

E2E PTP 92.8 654.3 -2300.8 2078.4 4026597 289 7.680 1

E2E PTP 99.3 1349.8 -2605.2 2519.3 1003188 72 1.913 0

E2E 143.0 109326 -936913 958514 11961097 851 22.814 150

E2E -4131.4 85691 -976670 675905 14817591 1058 28.252 185

E2E -9828.8 181502 -907245 908574 6806554 460 12.983 135

E2E 6000.8 149280 -888975 877568 3919821 273 7.477 64

E2E 754.4 77882 -885172 872504 6782986 487 12.938 76

Table 7.14: Measurement results - Synchronization error between two Etzel devices in different
network configurations
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Figure 7.14: Results plot - Measurement event error in different network configurations

17Sample size of the interpolated data. Interpolation Method: Piecewise Cubic Interpolating Polynomial
(PCHIP) adding 2 interpolation points per sample

18TS is the sampling period of the Etzel ADC and amounts to TS = 1
469kS

= 2.132µs
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The distribution of the detected measurement event errors for one chosen measurement
run in each network configuration is given in figure 7.15 and 7.16. The selected runs are
marked in yellow in table 7.14 and serve to illustrate the characteristic distribution of each
network configuration.
The sampling of data on the two Etzel devices is driven by two independent 60 MHz clocks.
Because the two clock frequency is specified only to about ±0.5 ppm each, a shifted frequency
between 1 and 0.1 Hz is observed between the two clocks. With respect to the sampling of
data this creates a systematic error on the ’measurement event error’ varying between 0 and
1
2 ∗ TS = 1066ns over the course of a few seconds.
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Figure 7.15: Results plot - Distribution of measurement event errors for chosen measurement
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Figure 7.16: Results plot - Distribution of measurement event errors for chosen measurement
’E2E’ (logarithmic y-scale)
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The measurement event error in in ’P2P’ and E2E PTP’ mode appears to be Gaussian
distributed and is in between the ±sample period marker. The ’E2E’ result however shows a
different distribution. The accuracy of the measured error is about a factor 100 worse, which
seems to be typical for all measurements with non-PTP switches. A closer inspection of the
data shows that a lot of the data from the PTP device is missing. These losses are irregularly
spread and may have been caused by packet loss. An example is given in the appendix B.2.3.

It has to be stressed that the meaningfulness of the results for the ’measurement
event error’ is limited. On the one hand the sampling period is restricted by internal
bandwidth limitations of the Etzel device (4 ∗ TS = 8.533µs), which results in only
one sampling point on a measurement event (= a rising or falling flank). On the
other hand the method used to determine the measurement event error is strongly
depending on the exact implementation of the algorithm and is not perfectly well
defined. Furthermore the sampling on two Etzel devices is not synchronized and
therefore varies between ±1 µs. The measurement event error results are thus a
subjective examination of the available data. It is nonetheless assumed that the
following observations are valid for potential use cases. The applied method is
described in detail in the appendix B.2.3.
In summary the results for the ’measurement event error’ is considered to be useful
to show that the underlying time synchronization is applied to measurements. It
may also be used for performance indication while keeping in mind that the results
are a pessimistic estimation of the real performance.

Interpretation

For the two network configurations ’P2P’ and ’E2E PTP’ the mean value ± standard deviation
of the the measurement event error is below the limit of the Etzel sampling period TS . The
recorded maximum and minimum values rarely exceed the 1000 us limit (1 out of hundreds)
and never exceed the 8533 us limit. The ’E2E’ configuration using a generic switch produces
measurement event errors up to 0.95 ms and thus severely violates the timing requirement.
Nonetheless it is assumed that this performance depends on the hardware implementation of
the switch and therefore does not necessarily have to be as bad as present.
When taking a closer look at the extreme errors that were detected in a ’P2P’ and ’E2E
PTP’ setting, it becomes clear that the exact implementation of the algorithm to detect
the measurement event error is crucial. The conditions that are present in the one case that
violates the limit in the ’E2E PTP’ setting are described below. The situation shown in figure
7.17 shows a falling edge input signal that has been detected by two Etzel devices (dev107
acting as PTP master and dev77 acting as PTP slave).
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Figure 7.17: Results plot - Single measurement event that results in a large measurement
event error (time difference between the two red lines)

The originally sampled data is shown in magenta for dev107 and in cyan for dev77. This
data is interpolated (green and blue thick line) by the detection algorithm and acts as base
for calculating the difference between two events (an event is defined as a flank crossing the
threshold value). This example clearly shows the influence of the relatively low sample rate
on the detection of the exact timestamp of a flank. For the original data of dev77 (cyan)
there is exactly one timestamp assigned to the flank, the data for dev107 contains only
timestamps before and after the flank. Therefore a nearly linear flank is assumed between the
two ’surrounding’ timestamps. The position of the sampling points on two Etzel devices is
dependent on the FPGA clocks. Both clocks are subject to drift and jitter and their relative
position is thus variable. After all, the measured time difference between the two flanks is
probably not too bad, considering the available data. An improvement to the applied method
might be to consider a fixed flank rise / fall time instead of interpolating the data which
generates variable rise / fall times.

Significance of Measurement Data

In order to answer the question whether the required synchronization accuracy was achieved,
an evaluation of the measurement data has been conducted under the consideration of the
statistical significance of the data.[18]

Is the measured mean + standard deviation ≤ 1000 ns ? (7.1)

For the purpose of answering the question 7.1, the following null hypothesis H0 was tested.
(µ = true mean value, σ = true standard deviation, σ0 = nominal standard deviation)

H0 : |µ+ σ| ≤ σ0
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An upper-tailed test is performed to calculate type I errors and prove the claim. H0 is
rejected only if the test statistic χ2 is larger than the critical value xp.

χ2 > xp

The test statistic χ2 is calculated as Chi-square statistic. (N = Sample size, s = measured
(sample) mean + standard deviation)

χ2 = (N−1)·s2
σ2
0

For a level of significance of α = 0.01 the critical value xp is calculated by means of the
Chi-Square Inverse Cumulative Distribution Function (CDF) F−1(p|v).19

xp = F−1(p|v)

p = F (x|v) =
∫ x

0
t(v−2)/2·e−t/2

2v/2·Γ(v/2)
dt

v = N − 1

p = 1− α

The gamma function Γ is defined by interpolating the factorial function Γ(x+ 1) = x!.

Γ(x) =
∫∞

0 e−t · tx−1dt

For each measurement the calculated test statistic χ2 and the critical value xp is given in
table 7.15.

Network Meas. event error [ns] No. of Test statistic Critical value Reject

config. | Mean + Std. Dev. | edges N χ2 xp H0

P2P 736.7 726 393.5 816.5 No

P2P 791.8 582 364.3 663.2 No

P2P 717.5 521 267.7 597.9 No

P2P 728.1 699 370.0 787.8 No

P2P 725.3 308 161.5 367.6 No

E2E PTP 786.3 291 179.3 349.9 No

E2E PTP 747.1 289 160.7 346.8 No

E2E PTP 1449.1 72 149.1 101.6 Yes

E2E 109469.0 851 10185943 948.8 Yes

E2E 89822.4 1058 8527943 1167 Yes

E2E 191330.8 460 16802831 532.4 Yes

E2E 155280.8 273 6558498 329.2 Yes

E2E 78636.4 487 3005270 561.5 Yes

Table 7.15: Measurement results - Evaluation of significance of measurement event error
results

19Details concerning the execution of the calculations in Matlab are listed in appendix B.2.3
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The results of the evaluation of significance of the measurement event error results leads to
the conclusion that the question 7.1 can only be answered with yes in all ’P2P’ measurements
and all ’E2E PTP’ measurements except one. In this specific measurement the sample size
was very low which presumably lead to a high standard deviation of the measurement event
error. This result is omitted due to the low sample size.
The performance is adequate for the actual Etzel sample rate of 2.132 µs. It has to be
considered that due to bandwidth limitations samples are only collected at a rate of 8.533
ns and therefore require a certain minimum sample size to produce meaningful results. The
conclusion is thus that the ’P2P’ and ’E2E PTP’ setting is suitable to deliver the required
performance. Since all five ’E2E’ measurements result in rejection of H0, it is assumed that
the ’E2E’ setting is not suitable to deliver the required performance.
Measurements in ’P2P’ and ’E2E PTP’ configuration are deemed to perform sufficiently with
a significance of 1− 0.01 = 99%.
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Chapter 8

Conclusion

This chapter describes conclusions that were drawn by the authors after finishing the project.
Achieved goals are listed as well as necessary conditions for operating a synchronized dis-
tributed measurement network. Ultimately future development opportunities are given.
The chapter is split up into implementation and testing sections.

8.1 Implementation

8.1.1 Achieved Goals

Feasibility of the PTP Synchronization

The first aim of this project was to perform a feasibility study. Therefore, multiple network
based time synchronization protocols were analyzed. Thereof, PTP was evaluated to be the
most suitable protocol for this project. Furthermore, the in-house PTP stack was migrated
to an Apalis evaluation board, in order to prove that a synchronization is possible between
two evaluation boards. Moreover, a concept for the synchronization between the FPGA and
the Ethernet controller was elaborated and simulated by three different simulations. The dif-
ference between the simulations never exceeded 150 ns. The main reason for the differences
were the limitations of the simulations.

Since the migration of the PTP stack was successful and the simulations of the FPGA
implementation matched and did not reveal problems for the implementation on Etzel, the
feasibility of this project was considered to be given.

Implementation on Etzel

The implementation of the PTP synchronization was mainly done by ZI, i.e. the implementa-
tion of the FPGA concept. In the scope of this project was the development of the interface
between PTP application and ZI data server. The implementation on Etzel was successful.
Multiple Etzel devices were synchronized via the Ethernet network at ZI.

8.1.2 Improvements on the Implementation

Although the implementation was successful, such that Etzel devices could be synchronized,
limitations of the implementation were discovered during measurements, which are described
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in the following.

Synchronization Precision A remaining problem is that it is impossible to determine
the PTP synchronization precision as a user. Although, the PTP stack calculates the time
difference between the local and the master time, which could be used as feedback to the
user, the time difference is not accessible by the PTP application. Note that the difference
between local and master time is dependent on the path delay measurements of the PTP.
A wrong path delay can give the impression that the PTP synchronization is locked in and
synchronous, although it is not.

PPS Signal Improvement The signal form of the PPS signal on the LED pin of the
Ethernet controller I210 shows a slow flank of approximately 40 ns. The reason for that is a
missing termination and the fact that this pin is supposed to drive a LED. In order to make
the flank steeper, the signal line of the PPS should be terminated. Furthermore, the input
pin of the FPGA should be well synchronized, i.e. at least 4 flip-flops in a row.

8.1.3 Further Development on the Implementation

The precision of the time synchronization is limited by the hardware of the Ethernet con-
troller as well as the PTP standard, e.g. the asymmetry of the up- and downlink is con-
sidered to be equal and the drift and offset are determined only on each clock cycle. White
Rabbit (WR)[19] is a project, which takes care of the aforementioned problems. It is a fully
deterministic Ethernet-based network for general purpose data transfer and synchronization.
It can synchronize over 1000 nodes with sub-nanosecond accuracy. Since WR extends the
PTPv2, it is perfectly compatible with other PTPv2 devices. However, WR would require
extra hardware in order go get the full precision.

8.2 Testing

The results that were achieved in chapter 7 are compared against the initially established
requirements in section 4.2. Additionally the basic conditions that are necessary for the
expected performance of the system are determined.

8.2.1 Achieved Goals

The requirements from ZI have originally been defined in terms of ’Synchronisation accuracy’,
’Time-to-Lock’ and ’Quality of time synchronization’.

Synchronization Accuracy The initial goal concerning synchronization accuracy of the
order of 10 ns has been confirmed by measurements of the PPS between Apalis devices. The
distributed time bases showed time errors with mean values plus standard deviation of 15 to
45 ns, depending on the network configuration. These values are considered as lower bound
for the error.
System tests have shown that two Etzel devices can be operated synchronously and maintain
sufficient synchronization accuracy. The question ”Is the measured mean value plus standard
deviation (of the measurement event error) less or equal than 1000 ns?” has been answered
with yes for both ’P2P’ and ’E2E PTP’ network configurations.
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For these two configurations, extreme values of the error are always better than ±2000 ns,
which represents an upper bound for the synchronization error and is sufficient below the
sample period of 8533 ns. Therefore measurements can be performed synchronously with a
distributed Etzel measurement setup under these conditions.

Time-to-Lock The Time-to-Lock for the PTP synchronization between two devices was
measured at a mean value of 60.6 s and a worst case of 75 s meets the requirement of five
minutes.

Quality of Time Synchronization The measurements prove that timestamps are incre-
mented at each sample in a sufficiently uniform way. No negative time increments were
recorded, however only the locked-in state was considered. Therefore the conclusion is that
the required quality is achieved during locked-in operation. The time increments in ’P2P’
and ’E2E PTP’ configurations show a small standard deviation (around 1.7 ns) and thus fit
the desired behavior very well.

8.2.2 Necessary Basic Conditions

In order to ensure the expected performance, the following requirements have to be fulfilled
in respect to the device setup and environmental conditions.

Network The Etzel devices need to be connected directly (P2P) or with a PTP-capable
switch to guarantee sufficient performance. Generic (Non-PTP) switches may also provide
the required performance but are dependent on the exact implementation of the switch.
External network traffic below 30 % of the maximum achievable data rate does not influ-
ence the synchronization accuracy at all. The effect of external traffic on the accuracy got
noticeable only for data rates above 75 % of the maximum achievable rate of about 40 MiB/s.

PTP Configuration The PTP application needs to be set to a rate of ’Sync’ packets of 8
packets

s and the ’DelayReq’ to 1
16
packets

s for highest accuracy and lowest traffic overhead. These
values have been set as default configuration. The required bandwidth for PTP Ethernet
packets in this configuration is 0.8 KB/s.

CPU Load The influence of limited CPU resources is negligible even for the case of all
involved CPUs undergoing 100 % load.

Temperature Static ambient temperature differences between two devices influence the
synchronization accuracy below 10 ns and are thus negligible. Variable temperature changes
at the maximum measurable rate of 5.3

◦C
min are negligible as well.

Multiple Devices Up to four Apalis devices have been tested in a synchronized network
setup. While the standard deviation of the synchronization accuracy was unaffected, the
mean value differed by about 15 ns (when comparing four to two devices).
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8.2.3 Discovered Limitations

The measurements led to the discovery of unexpected limitations to the operation of time
synchronized Etzel devices in an Ethernet network.

Maximum Rate of PTP Sync Packets The maximum rate of PTP Sync packets was
measured to be 8 packets per second. The reason for this limitation is assumed to be a
restriction defined in the core part of the PTP stack. In order to limit the CPU load generated
by the processing of PTP events, new events are only handled at a rate of at most 10 events
per second. The corresponding measurement is ’U3 - Bandwidth for Synchronization Packets
vs. Accuracy’.

Insufficient Time Synchronization When Using a Generic Switch In an ’E2E’ con-
figuration of two Etzel devices, the quality of time increments was restricted due to missing
samples and timestamps at the slave device. It is assumed that this loss was caused by the
switch not being able to timely route the PTP packets. Therefore it is advised to only use
PTP-capable switches or direct (P2P) connections for synchronized measurements.
Measurement results are listed in ’S0 - Etzel time synchronization’.

Negative Time Increments The ZI data server that distributes the measurement data
is not capable of handling non-monotonous timestamps. The only time this behaviour has
been observed is during the startup phase of an Etzel. The problem occurs only when the
PTP application connects to a PTP master that runs a clock which is in the past (compared
to the local clock). Another requirement for this problem to occur is that the time difference
between the two devices must be larger than 1

60MHz ∗
1
16 ∗2

26 = 69.905ms. Possible mitigation
strategies are described in section 3.3.4.

8.2.4 Future Measurements

It is advised that the following additional system tests with complete Etzel measurement
setups are performed in the future to ensure reliability in the long run.

� S3 - Long-Term Consistency of Time Increments

� S4 - Long-Term Evaluation of Synchronized Measurement Events

8.2.5 Further Development Opportunities

Possibilities to improve the performance of synchronized Etzel measurement setups are dis-
cussed below.

Variations in the Mean Value of Synchronization Accuracy Although measurement
results under the same conditions were fairly consistent and repeatable, certain outliers have
been observed.1 In order to determine the cause of such unexpected behaviour additional
examinations would be necessary. Since the resulting PPS mean plus standard deviation
stayed below 50 ns the current state of the implementation was deemed acceptable.

1For example the Ethernet PPS result for ’E2E PTP’ configuration in section 7.2.1 with a mean synchro-
nization accuracy (PPS) of 39 ns instead of expected 2 ns.
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For further development it might be interesting to try to move away from the dedicated Intel
I210 controller and move the Ethernet MAC into the FPGA. With more control over the
hardware implementation, the accuracy might be improved.

Synchronize Sampling Clocks Due to the sampling clocks of two Etzel devices being
unsynchronized, a systematic clock drift is observed. The maximum error between two clocks
is half the sampling rate (1

2 ·
1

60MHz · 128 = 1066ns).
In order to mitigate the effects of unequal sampling clocks on the measurement event error as
described in the results of ’S2’, the sampling clock might instead be locked to the synchronized
time in the FPGA.

Consider Variable Sampling Clock at Evaluation Instead of correcting the unsyn-
chronized sampling clocks at runtime, their difference might (partially) be corrected when
evaluating the measurement data. If all involved devices are exposed to the same environ-
mental conditions, the difference in oscillator frequency should be fairly constant and can
therefore be estimated and corrected. With this measure, the systematic error (of up to 1066
ns) could be corrected as well.
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Appendix Implementation

A.1 Configuration of the Hardware Timestamping

In Listing A.1, the possible definitions for RX hardware timestamp filtering are listed.

1 // / usr / inc lude / l i nux / net tstamp . h
2

3 . . .
4 /**
5 * s t r u c t hwtstamp conf ig − %SIOCSHWTSTAMP parameter
6 *

7 * @flags : no f l a g s de f ined r i g h t now , must be zero
8 * @tx type : one o f HWTSTAMP TX *

9 * @rx type : one o f one o f HWTSTAMP FILTER *

10 *

11 * %SIOCSHWTSTAMP expect s a &s t r u c t i f r e q with a i f r d a t a po in t e r to
12 * t h i s s t r u c t u r e . d e v i f s i o c ( ) in the ke rne l takes care o f the
13 * t r a n s l a t i o n between 32 b i t use r space and 64 b i t k e rne l . The
14 * s t r u c t u r e i s i n t e n t i o n a l l y chosen so that i t has the same layout on
15 * 32 and 64 b i t systems , don ’ t break t h i s !
16 */
17 s t r u c t hwtstamp conf ig {
18 i n t f l a g s ;
19 i n t tx type ;
20 i n t r x f i l t e r ;
21 } ;
22

23 /* p o s s i b l e va lue s f o r hwtstamp config−>tx type */
24 enum {
25 /*
26 * No outgoing packet w i l l need hardware time stamping ;
27 * should a packet a r r i v e which asks f o r i t , no hardware
28 * time stamping w i l l be done .
29 */
30 HWTSTAMP TX OFF,
31

32 /*
33 * Enables hardware time stamping f o r outgoing packets ;
34 * the sender o f the packet dec ide s which are to be
35 * time stamped by s e t t i n g %SOF TIMESTAMPING TX SOFTWARE
36 * be f o r e sending the packet .
37 */
38 HWTSTAMP TX ON,
39 } ;
40

41 /* p o s s i b l e va lue s f o r hwtstamp config−>r x f i l t e r */
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42 enum {
43 /* time stamp no incoming packet at a l l */
44 HWTSTAMP FILTER NONE,
45

46 /* time stamp any incoming packet */
47 HWTSTAMP FILTER ALL,
48

49 /* re turn value : time stamp a l l packets reques ted p lus some othe r s */
50 HWTSTAMP FILTER SOME,
51

52 /* PTP v1 , UDP, any kind o f event packet */
53 HWTSTAMP FILTER PTP V1 L4 EVENT,
54 /* PTP v1 , UDP, Sync packet */
55 HWTSTAMP FILTER PTP V1 L4 SYNC,
56 /* PTP v1 , UDP, Delay req packet */
57 HWTSTAMP FILTER PTP V1 L4 DELAY REQ,
58 /* PTP v2 , UDP, any kind o f event packet */
59 HWTSTAMP FILTER PTP V2 L4 EVENT,
60 /* PTP v2 , UDP, Sync packet */
61 HWTSTAMP FILTER PTP V2 L4 SYNC,
62 /* PTP v2 , UDP, Delay req packet */
63 HWTSTAMP FILTER PTP V2 L4 DELAY REQ,
64

65 /* 802 .AS1 , Ethernet , any kind o f event packet */
66 HWTSTAMP FILTER PTP V2 L2 EVENT,
67 /* 802 .AS1 , Ethernet , Sync packet */
68 HWTSTAMP FILTER PTP V2 L2 SYNC,
69 /* 802 .AS1 , Ethernet , Delay req packet */
70 HWTSTAMP FILTER PTP V2 L2 DELAY REQ,
71

72 /* PTP v2 /802 .AS1 , any layer , any kind o f event packet */
73 HWTSTAMP FILTER PTP V2 EVENT,
74 /* PTP v2 /802 .AS1 , any layer , Sync packet */
75 HWTSTAMP FILTER PTP V2 SYNC,
76 /* PTP v2 /802 .AS1 , any layer , Delay req packet */
77 HWTSTAMP FILTER PTP V2 DELAY REQ,
78 } ;

Listing A.1: Possible values for fimestamp filtering

A.2 FPGA Registers

In Table A.1, the implemented registers of the FPGA are listed, which are externally accessible
lateexternallyusing the ZI Data Server.
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Register R/W Size Description

Timestamp R 64 bit Timestamp is the current timestamp.
Next Timestamp R/W 64 bit Next Timestamp defines the time of the

next PPS.
Control Enable R/W 1 bit If Control Enable is set, the FPGA syn-

chronizes to the above defined time. Oth-
erwise, the timestamp unit acts as a free-
running counter.

Alpha Low R/W 4 bit Alpha Low is the low-pass filter parameter
of the drift correction, if the offset is below
the Threshold. The filter parameter α is

defined as follows: α =
1

2AlphaLow
.

Alpha High R/W 4 bit Alpha High is the low-pass filter parame-
ter of the drift correction, if the offset is
above the Threshold. The filter parameter

α is defined as follows: α =
1

2AlphaHigh
.

Threshold R/W 6 bit The Threshold defines the switching be-
tween Alpha Low and Alpha High. The
threshold th is defined as follows: th =
2Threshold+1 ∗ 16.67ns.

Drift R signed 32 bit The Drift represents the drift register
value. The value is updated with every
Next Timestamp write.

Offset R signed 32 bit The Drift represents the offset register
value. The value is updated with every
Next Timestamp write.

Table A.1: Implemented registers which can be accessed by the FPGA interface.
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Appendix Testing

B.1 Measurement Plan for Unit Tests

On the following pages all unit tests are described in detail. The important parameters for
each test setup are characterized in a table. Further details are given in text form after each
table, describing how exactly the measurement was performed and how problems were solved.

Test Setup Details Since (almost) all unit tests rely on the measurement of the offset
between the PPS signal of multiple devices, the general setup was the same for all tests.
It is displayed in figure B.1. The measurement setup consists of two or more development
boards with a Apalis processor module on each device, these are the DUT. The PPS signal is
generated by the Ethernet controller, where a small cable is soldered onto the corresponding
SDP2. An oscilloscope is used to sample these signals and evaluate the time difference between
the rising edges. The oscilloscope always triggers on the device which acts as PTP master
and is connected to channel 1 (yellow). The second device (which acts as PTP slave and
which shall be compared to the master) is connected to channel 2 (blue). More details to the
configuration of the oscilloscope are given in section B.3.

Oscilloscope

Rohde & Schwarz
RTO1014

Development Board

Ch 1

Ch 4

Processor Module - Apalis T30
(PTP-Master)

Ethernet-
Controller

PPS
Master

Pin 61 (SDP1) 

Development Board

Processor Module - Apalis T30
(PTP-Slave)

Ethernet-
Controller

PPS
Slave

Pin 61 (SDP1) 

DUT

Ethernet

Figure B.1: Test setup for PPS time offset measurement

The right side of figure B.1 contains a screen shot of the oscilloscope used for PPS mea-
surements. The yellow waveform on top represents the previously triggered rising edge of
the PTP master PPS signal and the blue waveform in the middle the corresponding signal

2On the Intel I210 Integrated Circuit (IC): Pin 61 (SDP1)
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from the PTP slave. On the bottom a histogram describes the distribution of the slave PPS
relative to the master PPS. Thus characterizing the synchronization accuracy.

Default settings and conditions Where nothing else is specified, the following
default settings / conditions were applied: Two or more DUT were placed on a table
and connected via P2P Ethernet connection3. Both boards were exposed to room
temperature (approximately 24 ◦C). One development board was always used as
master and the other always as slave. The PTP message rates were set at 4packetss

for the ’Sync’ packets and at 1
16
packets

s for the ’DelayReq’ packets.

The following subsections contain information about each test in detail.

B.1.1 U0 - Time-to-Lock

U0 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Time-to-Lock.

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Time to synchronization lock.

Measured
indicator

Time difference between the two PPS signals is used to indicate when
a sufficient synchronization is achieved.

Measurement
device

The PPS signals of two development boards are compared and a signal
is generated as soon as a predefined accuracy is reached. This signal
is used to reset the PTP clock and restart the synchronization process
on both boards. The Time-to-Lock is logged.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 100 synchronization cycles

Input Signal -

Comment -

Table B.2: Measurement description for Time-to-Lock measurement of two development
boards

Detailed Description Two different measurements shall be performed. Firstly the devel-
opment of the time synchronization accuracy shall be examined on one device by plotting
the time error of every PPS pulse from power-on to synchroniation lock. This measurement
was a single event. Secondly the statistical distribution of the complete time-to-lock (from
power-on to synchronization lock) shall be evaluated over 100 reboots. The main evalua-
tion of this measurement is located in section 7.1.1, although secondary measurement results
are presented after this measurement description in paragraph ’Distribution of Initial PPS
Pulses’.

3A 1.5 m Cat5 Twisted-Pair cable was used
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Initial Time Offset Development For the measurement of the initial time offset from
master (from power-on to synchronization lock), the oscilloscope had to be set to a reduced
time resolution. An initial coarse time resolution allowed the sampling of ±500 ms time
errors. In a second phase, with a minimum resolution of 2 ns, offsets of up to ±1 ms could
be detected. Due to the slow signal period of 1 second, settings were changed on the fly.

Time-to-Lock In order to get comparable data in a worst case scenario (i.e. start from a
powered off state), the time from the device booting to achieving synchronization lock has
been measured. After each test, the master and slave device were rebooted. The moment
when the screen went black was considered to be the starting time for a new measurement.
The end time of a test was defined by the first occurrence of five consecutive PPS pulses with
an accuracy of less than ±10 ns. These 5 samples have been included in each measurement
of ’time to synchronization lock’ in table B.3. The start and end conditions were checked
visually with the aid of the previously used oscilloscope setup.
The time between reboot and the Linux Lightweight X11 Desktop Environment (LXDE) [20]
being ready to accept user input has been measured to 28 seconds. The PTP application
was then automatically started as service by systemd with the standard configuration (4
synchronization packets per second and 1/16 delay request packets per second). The service
that was started at each boot (listing B.2), calls a shell script which first detects the local IP
address and then runs the PTP application with the IP address as parameter.

1 [ Unit ]
2 Desc r ip t i on = PTP−Stack f o r time synchron i za t i on
3

4 [ S e r v i c e ]
5 ExecStart = /home/ root /run−ptp . sh
6

7 [ I n s t a l l ]
8 WantedBy = multi−user . t a r g e t

Listing B.2: Service definition file for ptp-application

The following table B.3 contains all measurement results for time-to-lock in seconds.

Time to synchronization lock [s]4

57 65 56 63 66 58 57 57 60 63

64 63 58 57 58 67 62 57 57 65

60 62 67 63 68 59 55 55 61 59

62 67 62 56 66 60 61 58 58 60

61 65 58 53 59 52 60 56 59 60

62 60 68 54 62 60 65 60 58 61

59 68 64 65 59 57 58 56 59 61

70 68 65 52 60 57 59 59 56 62

58 60 67 56 57 59 59 54 58 61

78 66 64 65 61 58 60 58 60 61

Table B.3: Measurement results for Time-to-Lock measurement

Distribution of Initial PPS Pulses While performing the time-to-lock measurements,
the statistical distribution of the initial time synchronization pulses that fall within synchro-
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nization lock was measured as well. The first 10 PPS pulses with an accuracy better than
±10 ns have been captured5 in figure B.2 and are evaluated in table B.4. The yellow marker
lines in figure B.2 represent ±10 ns.

Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

-2.403 13.28 -250 184.87 5870

Table B.4: Measurement results - Distribution of initial PPS pulses

Figure B.2: Results histogram - Distribution of initial 10 ’accurate’ PPS pulses

4The 5 seconds from the first consecutive samples that were accurate enough to qualify as ’synchronized’
are included

5The preceding pulses (before synchronization lock was achieved) were less accurate than ±250 ns, so that
they have not been captured by the scope of this measurement. Some of them happened to randomly fall into
the capturing range, which led to the extreme maximum / minimum values
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B.1.2 U1 - Time Offset (PPS)

U1 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Time offset (PPS).

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 2 hours

Input Signal -

Comment Measurement setup according to figure B.1

Table B.5: Measurement description for time offset measurement of two development boards

Detailed Description Two Apalis boards were exposed to default environmental con-
ditions (room temperature, default software settings, etc.) to measure the reference time
synchronization accuracy via the PPS signal. The measurement was performed at the ’SDP1’
pin of the Ethernet controller, which will not directly be available to the FPGA for imple-
mentation of the Etzel synchronization. Instead a LED pin is available6, which routes the
same functionality as the SDP pin but has a large rise time of about 40 ns. For the purpose of
the unit tests we use the SDP1 pin, which provides sharp edges and very little jitter. Details
concerning the distinction between these two pins are described in 3.2.8 ’Problems during the
Implementation’.
The measurement results of the LED pin are described in table B.6 and depicted in figure
B.3 for comparison with the SDP pin. The results mostly match the previous SDP results,
except for the maximum value of 224.95 ns.

Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

-6.946 5.808 -22.545 224.95 7499

Table B.6: Measurement results - Time offset (PPS) measured at LED-Pin

6The PPS signal can internally be routed to the ’Ethernet Active’ LED pin but requires small hardware
modifications in order to allow the measurement of a clean signal.
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Figure B.3: Results histogram - Time offset (PPS) measured at LED-Pin

B.1.3 U2 - Time Offset (PPS) long-term

U2 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Time offset (PPS) long-term.

All parameters except the duration are the same as in U1

Duration 24 hours

Input Signal -

Comment Measurement setup according to figure B.1

Table B.7: Measurement description for long-term time offset measurement of two develop-
ment boards

Detailed Description The exact same setup was used as in B.1.2, only the duration was
changed to 24 hours (= 86400 samples).
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B.1.4 U3 - Bandwidth for Synchronization Packets vs. Accuracy

U3 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Bandwidth for synchronization packets vs. ac-
curacy

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 30 minutes per interval setting

Input Signal -

Comment Choose bandwidth settings from nearly 0 B/s to the highest possible
value.

Table B.8: Measurement description for synchronization packet bandwidth measurement of
two development boards

Detailed Description The bandwidth used by synchronization packets is determined by
the interval of synchronization and delay request packets. The PTP application core software
only permits rates of synchronization or delay request packets of 2x where x can be chosen.
Per default synchronization packets are sent every second (20) and delay request packets
every 16 seconds (24). Sync intervals values between 21 and 2−10 (= 0.5 to 1024 packets
per second) were used as setting values with a focus on optimizing accuracy (with the least
possible bandwidth used). Delay request intervals are secondary but shall be tested as well.
A range of 24 to 2−10 was considered.
The scripts that were used to measure the network traffic are listed below in B.3 and B.4.

1 #! / bin /bash
2

3 INTERVAL=”1” # update i n t e r v a l in seconds
4

5 i f [ −z ”$1” ] ; then
6 echo
7 echo usage : $0 [ network−i n t e r f a c e ]
8 echo
9 echo e . g . $0 eth0

10 echo
11 e x i t
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12 f i
13

14 IF=$1
15

16 whi le t rue
17 do
18 R1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx bytes ‘
19 T1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx bytes ‘
20 s l e e p $INTERVAL
21 R2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx bytes ‘
22 T2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx bytes ‘
23 TBPS=‘expr $T2 − $T1 ‘
24 RBPS=‘expr $R2 − $R1 ‘
25 TKBPS=‘expr $TBPS‘
26 RKBPS=‘expr $RBPS‘
27 echo ”TX $1 : $TKBPS B/ s RX $1 : $RKBPS B/ s ”
28 done

Listing B.3: U3: Traffic measurement: Bandwidth

1 #! / bin /bash
2

3 INTERVAL=”1” # update i n t e r v a l in seconds
4

5 i f [ −z ”$1” ] ; then
6 echo
7 echo usage : $0 [ network−i n t e r f a c e ]
8 echo
9 echo e . g . $0 eth0

10 echo
11 echo shows packets−per−second
12 e x i t
13 f i
14

15 IF=$1
16

17 whi le t rue
18 do
19 R1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx packets ‘
20 T1=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx packets ‘
21 s l e e p $INTERVAL
22 R2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / rx packets ‘
23 T2=‘ cat / sys / c l a s s / net /$1/ s t a t i s t i c s / tx packets ‘
24 TXPPS=‘expr $T2 − $T1 ‘
25 RXPPS=‘expr $R2 − $R1 ‘
26 echo ”TX $1 : $TXPPS pkts / s RX $1 : $RXPPS pkts / s ”
27 done

Listing B.4: U3: Traffic measurement: Packets per seocnd
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B.1.5 U4 - Network Load vs. Accuracy

U4 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Network load vs. accuracy

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P). The
additional network traffic shall be generated by the PTP slave devel-
opment board.

Duration 30 minutes per load setting

Input Signal -

Comment The network load is defined by bandwidth used. Rates up to the
maximum achievable data rates shall be tested.

Table B.9: Measurement description for network load impact on accuracy measurement of
two development boards

Detailed Description Traffic is generated by sending zeros from the PTP slave device to
the PTP master via TCP. Transmitting is done via ’NetCat (nc)’ and receiving is handled by
’socat’. In order to limit the traffic rate and display the current rate, all traffic is piped through
’Pipe Viewer (pv)’. The commands used to execute the transmit and receive functionality
are listed in B.5 and B.6.

1 $ dd i f =/dev/ zero | pv −ar −−rate−l i m i t 1M | nc 1 9 2 . 1 6 8 . 1 . 1 5 0 42

Listing B.5: U4: PTP Slave as Transmitter

1 $ socat − TCP−LISTEN:42 | pv −ar > /dev/ n u l l

Listing B.6: U4: PTP Master as Receiver

First of all the local maximum data rate was measured to 1.92 GiB/s. This determines
the upper bound of data transfer rates achievable by the CPU.

1 $ pv /dev/ zero > /dev/ n u l l

Listing B.7: Local maximum rate
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Subsequently the maximum data rate achievable when sending the same data over the
network was determined7. The results define the upper bound of data rates achievable over
Ethernet. The results were taken with and without the PTP application running in the
background, according to listing B.8.

Average rates Client Server

With PTP 32.2 MiB/s 31.2 MiB/s

Without PTP 38.6 MiB/s 34.7 MiB/s

Table B.10: Maximum transfer rates achievable over Ethernet using ’netcat’

1 #Server :
2 $ socat − TCP−LISTEN:42 | pv −ar > /dev/ n u l l
3

4 #Cl i en t :
5 $ dd i f =/dev/ zero bs=1M count=500 | pv −ar | nc 1 9 2 . 1 6 8 . 1 . 1 5 0 42

Listing B.8: TCP maximum rate using netcat

A different method to determine the maximum transfer rates achievable over Ethernet
is using the program ’iperf’ as mentioned in B.9. This method resulted in a bandwidth of
46 MB/s. Presumably this value is higher than in table B.10 because this application is
optimized for network bandwidth, whereas the aforementioned method (based on netcat) is
very versatile but probably less efficient.

1 #Server :
2 $ i p e r f −s
3

4 #Cl i en t :
5 $ i p e r f −c 1 9 2 . 1 6 8 . 1 . 1 5 0

Listing B.9: TCP maximum rate using iperf

7The rates measured are lower due to the server program requiring to be started earlier and therefore
measuring a rate of 0 MiB/s for a certain time.
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B.1.6 U5 - CPU Load vs. Accuracy

U5 Verification of the synchronized time keeping accuracy of two devel-
opment boards. CPU load vs. accuracy

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 15 minutes per load setting

Input Signal -

Comment PTP Master: 0 / 50 / 80 / 90 / 100 % and PTP Slave: 0 / 50 / 80 /
90 / 100 %

Table B.11: Measurement description for CPU load impact on accuracy measurement of two
development boards

Detailed Description Generic CPU load can be emulated by running the program ’stress’.
The option ’-c 4’ spawns four workers, which spin on sqrt(). This results in all four CPU
cores being fully stressed. The fact that all four cores are utilized was verified running ’ps -L
-o pid,tid,psr,pcpu’. The keyword ’PSR’ specifies the CPU core that is assigned to a process.
In order to limit the generated load, the program ’cpulimit’ was applied after the workers
have been spawned. The load can be limited per worker between 0 and 100% with the
variable ’LOAD PERC’ in listing B.10. Since an equal load shall be simulated, the same
’LOAD PERC’ limit was applied to all four workers per test.

1 $ s t r e s s −c 4
2 $ p ido f s t r e s s #re tu rn s {PID parent , PID0 , PID1 , PID2 , PID3}
3 $ cpu l im i t −p $PIDx − l $LOAD PERC #f o r $PIDx = {PID0 , PID1 , PID2 , PID3}

Listing B.10: CPU load testing
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B.1.7 U6 - Temperature vs. Accuracy

U6 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Temperature vs. accuracy

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 30 minutes per load setting

Input Signal -

Comment The PTP slave is kept at room temperature while the PTP master is
subjected to the following temperatures: 5◦C / 20◦C / 30◦C / 40◦C

Table B.12: Measurement description for temperature impact on accuracy measurement of
two development boards

Detailed Description The usecase of ’decentralized synchronization’ contains the place-
ment of Etzel devices in separate rooms. Environmental conditions may differ amongst dif-
ferent rooms, thus measurements were performed between 5◦C and 40 ◦C in the following
configurations:

� The master DUT was subjected to a certain fixed temperature, while the slave was kept
at unstabilized room temperature

� Both devices were subjected to the same fixed temperature

� The master DUT was subjected to a ramping up temperature, while the slave was kept
at unstabilized room temperature

A climatic chamber of the type ’Heraeus Vötsch VMT 04/16’ (details in appendix B.3.2) was
used to stabilize the temperature of one or two DUT. The chamber provides two operating
modes: i) setting up a fixed temperature, which is then held by switching on or off the heating
or cooling unit and ii) toggling between two preset temperatures in order to perform a linear
temperature ramp.
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B.1.8 U7 - Cable Length vs. Accuracy

U7 Verification of the synchronized time keeping accuracy of two devel-
opment boards. Cable length vs. accuracy

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy.

Measured
indicator

Time difference between the two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the two development boards (P2P).

Duration 30 minutes per cable length

Input Signal -

Comment Compare twisted pair Ethernet cables with different lengths (1 m to
40 m) and cable categories (5 to 6)

Table B.13: Measurement description for impact of the cable length on accuracy of two
development boards

Detailed Description The influence of the Ethernet cable used to connect two DUT is
assumed to be relatively small, which shall be proved by measurements. It is assumed that
any delays introduced by the cable would be rather fixed than variable. Thus they can be
detected by the PTP and corrected. Potentially influential cable parameters are the length
and the cable category[21].
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B.1.9 U8 - More Than Two Devices (With and Without a PTP-Capable
Switch)

U8 Verification of the synchronized time keeping accuracy of two devel-
opment boards. More than two devices (with and without a
PTP-capable switch)

DUT Development board with Apalis T30 module and PTP-stack applica-
tion

No. of DUT
and Setup

Two development boards are connected via Ethernet. Time synchro-
nization via PTP has to be enabled.

Tested device
characteristics

Synchronization accuracy for more than two devices. Either connected
over a PTP-capable switch or a ordinary switch.

Measured
indicator

Time difference between two PPS signals. Standard deviation.

Measurement
device

The network controllers on each Apalis module generate a pulse per
second on a GPIO pin. This pin is probed with a digital oscilloscope.
By triggering on the PPS signal of the PTP master device, the time
offset of the PTP slave is displayed. The offset is evaluated statisti-
cally.

Additional
Material

Ethernet connection between the development boards (via PTP-aware
switch).

Duration 30 minutes per setup

Input Signal -

Comment Similar test to U1, except for the connection method.

Table B.14: Measurement description for impact of a PTP-switch on the accuracy of multiple
development boards

Detailed Description It is central to the usecase of ’decentralized synchronization’ to em-
ploy more than two DUT, thus requiring a central multiport Ethernet connector (switch). It is
expected that the following parameters of the network topology influence the synchronization
accuracy:

� The type of Ethernet switch (mainly whether it is PTP-capable or not)

� The amount of DUT that attempts to synchronize via PTP

In order to examine synchronization accuracy in these various network topologies, the PPS
offset between a fixed slave and the master was measured.
The non-PTP-capable switch used for the tests was a Zyxel GS-108B (details in B.4.3), which
is a 8-port Gigabit Ethernet switch. It supports only the ’Store-and-Forward’ transmission
mode.
The PTP-capable switch that was available for tests, was a Hirschmann RSP 35 managed
switch (details in B.4.4). Although it is intended to be used as high reliability industrial
Ethernet switch, it also provides configurable PTP capabilities. In particular both boundary
clock and transparent clock modes as described in section 5.1. The settings that were chosen
for each mode are listed below:
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General PTP settings

� Operation IEEE 1588/PTP: On

� PTP Mode: v2-transparent-clock OR v2-boundary-clock

� Sync Lower Bound [ns]: 30

� Sync Upper Bound [ns]: 5000

� Enable PTP Management: No

Transparent clock

� Delay Mechanism: E2E

� Primary Domain: 0

� Network Protocol: UDP/IPv4

� Multi Domain Mode: No

� VLAN: none

� VLAN Priority: 4

� Syntonize: Yes

� Synchronize local clock: Yes

Boundary clock

� Priority 1: 128

� Priority 2: 128

� Domain Number: 0

� Two Step: Yes

� Network Protocol (under Port Tab): UDP/IPv4

Slave-to-Slave Synchronization Accuracy Aditional measurements were performed to
verify the time synchronization functionality between two PTP slave devices. The setup
consisted of three Apalis boards connected to the PTP-enabled switch. The oscilloscope was
connected to both slaves instead of the master and a slave. The measured offset therefore is
not a ’PPS offset from master’, but a ’PPS offset between slaves’. The results are described
in table B.15 and the histogram is displayed in figure B.4.

Synchronization accuracy [ns]
Sample size

Mean Std. deviation Min Max

4.851 33.317 -84.669 99.699 2610

Table B.15: Measurement results - Slave to slave PPS offset
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Figure B.4: Results histogram - Slave to slave PPS offset

B.2 Measurement Plan for System Tests

Detail Description The execution of system tests S0 to S2 was split up into two parts:
measurements at the ZI facilities and subsequent analysis of the data. The measurement
required two Etzel devices, a PC and Ethernet connectivity plus a Rhode & Schwarz RTO1024
oscilloscope. Analysis of the measurement data was done in Matlab.

Measurement Two Etzel devices were connected to the same switch (depending on the
chosen network configuration) or directly P2P and operated for at least 1 minute to ensure
that the PTP synchronization is locked in. Subsequently the Etzels were configured by means
of the ZI web interface. Due to memory and bandwidth limitations in the Etzel architecture
a consistent stream of data could only be recorded for less than 30 seconds. The bandwidth
of the Etzel frontend was selected as large as possible to achieve a high resolution (at the time
of the measurement it was restricted to maximum 51.1 kHz). However this resulted in a low
Signal-to-Noise-Ratio (SNR) and the need for relatively extensive post-processing in order to
find corresponding data for each measurement event.
During operation each Etzel produces a constant stream of measurement data which is sent
from the local8 ZI data server to the local web server. For the purpose of analyzing the data
after the actual measurement, a special instance of the web server was set up on a PC that
was connected to the DUT. This allowed the collection of the measurement data in a ’.mat’
file. Multiple measurements with a duration of a few seconds up to a minute each were taken
per network configuration.

Setup The setup for all measurements varied in terms of the network configuration and the
connection method to the host PC. The following overall steps were followed to perform a
measurement:

� Connect the Etzels via Ethernet: direct (P2P) or via a switch (E2E) or a PTP-enabled
switch (E2E PTP)

� Connect a host PC to the same network or establish a direct connection to each Etzel
via USB

� Start the ZI data server on both Etzels

� Start the ZI web server for both Etzels on the host PC:

8i.e. on the actual Etzel device
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1 $ ziWebServer −r . / WebServer/html −−se rver−port <RemotePort , d e f a u l t :8004> −−
api−l e v e l 4 −−se rver−ip <RemoteIp 1>

2 $ ziWebServer −r . / WebServer/html −−se rver−port <RemotePort , d e f a u l t :8004> −−
api−l e v e l 4 −−se rver−ip <RemoteIp 2> −−port <LocalPort , i n s t ead o f 8006>

Listing B.11: Start ZI web server on the host PC for 2 remote Etzel devices

� Enable the PTP synchronisation in the web server of each Etzel:

– Tab ’Etzel’ ->Enable HF Trigger Input and HF Trigger Output

– Tab ’Etzel’ ->Disable Gain Amplification

– Tab ’LockIn’ ->Choose an input channel. Set filter and ADC bandwidth to the
maximum

� Start the PTP application manually. Specify the IP address of the connected network
interface and the device number9.

1 $ . / p t p 2 l i n u x A p a l i s I 2 1 0 Z I <LocalIP> <DevNo>

Listing B.12: Start PTP application on Etzel

� Wait at least 60 seconds to ensure synchronization lock-in

� Define one Etzel as function generator. Connect the Output of this device to the desired
input of both Etzel devices.

� Enable the function generator output. E.g. via the program ’ziLink’.

� Enable the recording on both devices on the web server (preferably simultaneously) for
the desired time: Tab ’Lock-In’ ->’Record’

This method enables the generation of measurement data in the matlab ’.mat’ file format.
These files contain data in a complex format, timestamps for each data sample and addi-
tional information on the device setup. For further processing the timestamps were scaled to
nanoseconds and data samples were converted to absolute values.
For measurements that required the ’FPGA PPS’ output, an oscilloscope was connected to
the ’HF Trigger Output’ of both Etzel devices.
Since the Etzel devices only have a single Ethernet port, it is not possible to connect the host
PC directly when applying a ’P2P’ Ethernet setup. The Linux kernel that is used on the
Etzel devices supports ’Ethernet-over-USB’ which acts as a bridge protocol using the RNDIS
protocol. In this setup, the host PC was connected via USB to each Etzel device which acted
as USB host. After configuring IPs in different subnets for the two Etzels, the connection
from the host PC over an emulated Ethernet port was possible without any hassle.

9The device number is defined by the ZI data server. Eg. ’dev3005’
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Analysis Unfortunately the measurement could not be started on both devices synchronously
but had to be activated by hand on the web server of each device. The first step in evaluating
the measurement data was to extract the samples that were taken during the same time on
the two devices. Processing of the data was programmed in the following Matlab script files:

� Concatenate multiple data streams of one Etzel to form a single continuous measure-
ment: ’data concatenate.m’

� Find overlapping samples from two Etzels and cut out the data that has been measured
synchronously: ’data pre.m’

These scripts read measurement data from .mat files that exist per Etzel device and ultimately
generate one single .mat file per measurement that includes the data of both Etzel devices.
The subsequent analysis steps differ depending on the actual test and are therefore described
in the following subsections.

B.2.1 S0 - Etzel Time Synchronization

S0 Validation of the performance of the synchronized time keeping ac-
curacy of a single and multiple Etzel devices. Etzel time synchro-
nization.

DUT ’Etzel’ Lock-In Amplifier from Zurich Instruments

No. of DUT
and Setup

Two Etzel devices are connected via Ethernet. Time synchronization
via PTP has to be enabled.

Tested device
characteristics

Time synchronization performance in sub-second time span. Espe-
cially the linearity of the granular time increments between two precise
’second’ pulses.

Measured
indicator

Time stamps that are generated for each sample. The difference be-
tween two consecutive timestamps is referred to as ’time increment’.
The behaviour and distribution of time increments is examined, de-
pending on the network configuration.

Measurement
device

The data server software running on each Etzel is used to gain access
to the measurement timestamps. A computer connected to the same
network as the DUT is used to display and analyze the data.

Additional
Material

Ethernet connection between Etzels and the computer according to
one of these configurations: P2P, E2E with a generic switch and E2E
with a PTP switch.

Duration At least multiple seconds

Input Signal Sinus wave at measurable frequency that is toggled periodically

Comment For measurement setup see figure 6.2

Table B.16: Measurement description for sub-second time update performance of two Etzel
devices

Analysis The actual analysis of the measurement data in respect to sub-second time update
performance was programmed in the file ’incrementEval.m’ and contained the following steps:

� Select matching measurement files from the two Etzels
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� Calculate the time increments by applying the matlab function diff10 to the timestamps
of each Etzel (as described in listing B.13)

1 tmp = load ( f i l ename ) ;
2 t imeDi f f s 107 = d i f f (tmp . dev107 . t s ) ;
3 t imeDi f f s 77 = d i f f (tmp . dev77 . t s ) ;

Listing B.13: Calculate time increments in Matlab

The variable ’timeDiffs107’ and ’timeDiffs77’ are furthermore described as time increments
and are used to describe the sub-second time update performance of the two involved Etzel
devices. The data is evaluated visually with a plot in the time domain and a histogram to
show the distribution of the time increments.

Additional Measurement Results Figure B.5 depicts the time increments as they were
measured in a ’E2E’ network configuration with the behaviour of the PTP master on the top
and the PTP slave on the bottom. The distribution of both PTP master and slave reflects
the results of table 7.12 in section 7.2.1. The time increment behaviour shown in figure B.5
reflects the worst case scenario for time synchronization with respect to the network topology
because a switch was used that is not aware of the PTP requirements and the presence of
many network devices. While the time increments of the master device differ by less than
35 ns, the slave device has a large standard deviation of 38 µs due to the fluctuating timing
properties of the network path.
It is assumed that these errors are caused by the existing network traffic on the generic
Ethernet switch.
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Figure B.5: Results plot - Sub-second time increments for a chosen E2E measurement

10Y = diff(X) calculates differences between consecutive elements of the vector X
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The results of a ’P2P’ measurement are depicted in figure B.6. The behaviour of the PTP
master is similar to what has been observed for ’E2E’ measurements in table 7.12 in section
7.2.1. In contrast to the ’E2E’ measurements, the PTP slave shows very good synchronization
behaviour and performs very similar to the master. Thus confirming that the synchronization
works as expected.
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Figure B.6: Results plot - Sub-second time increments for a chosen P2P measurement

Analysis of Synchronization Accuracy

The synchronization accuracy was measured by comparing the PPS pulse from the slave
device to the master device. While this pulse is already known from the unit tests, a new
signal has been implemented to reflect the state of the ’second’ bit in the timestamp register of
the FPGA. The meaning therefore is that on each toggle the FPGA time unit has determined
that (depending on its current information) one second (actually rather 0.9 s) has passed.

Variable Drift Filter Coefficient

The time unit implementation in the Etzel FPGA performs drift correction in a similar method
to the PTP application. For the FPGA implementation, an exponential moving average filter
has been implemented. The current output value of the filter is calculated according to:
Yt = α ∗ Xt + (1 − α) ∗ Yt−1. (Xt: Input value at time t, Yt: Output value at time t) If
the ’Error from Master’ is too large, the coefficient is set to 1 in order to bypass the moving
average filter. In standard operation the coefficient is fixed at 1

23
= 0.125. The value for the

coefficient α was chosen according to simulation results 2.3.5 and this choice shall be verified
with measurements. The resulting ’FPGA PPS’ depending on various coefficients (in case
the offset is not too large) is described in table B.17. The test setup consisted of two Etzels
in a ’P2P’ configuration.
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Drift filter Synchronization accuracy [ns]
Sample size

coefficient α Mean Std. deviation Min Max

0.125 (Reference) -1.690 12.104 -42.685 55.11 3751

0.5 -19.967 12.758 -66.633 20.541 1803

0.25 -20.738 12.172 -56.613 13.527 1807

0.0625 -20.536 12.880 -59.619 27.555 1949

0.03125 -20.482 12.516 -66.633 13.527 1812

Table B.17: Measurement results - Variable drift filter coefficients vs. FPGA PPS

The results in table B.17 appear to contain a shift of the mean value of 20 ns. More
importantly the standard deviation is very consistent for all measurements. It is therefore
assumed that the influence of the actual value of the α coefficient is very small.

B.2.2 S1 - Verification of Time Increments

S1 Verification of the synchronized time keeping accuracy of two Etzel
devices. Verification of time increments.

DUT ’Etzel’ Lock-In Amplifier from Zurich Instruments

No. of DUT
and Setup

Two Etzel devices are connected via Ethernet. Time synchronization
via PTP has to be enabled.

Tested device
characteristics

Verification of time increments.

Measured
indicator

The growth of the current time is observed. It is expected that no
inconsistencies are observed (multiple occurrences of the same times-
tamp or decrease of the time).

Measurement
device

The data server software running on each Etzel is used to gain access
to the measurement timestamps. A computer connected to the same
network as the DUT is used to display and analyze the data.

Additional
Material

Ethernet connection between Etzels and the computer is established
via a PTP-Switch.

Duration 24 hours

Input Signal Sinus wave at measurable frequency that is toggled periodically

Comment For measurement setup see figure 6.2

Table B.18: Measurement description for long-term consistency of time updates of two Etzel
devices

Setup The setup for all measurements varied in terms of the network configuration and the
connection method to the host PC. The variants are described in detail in B.2.1.

Analysis The measurement data was processed in order to calculate the time increments, as
described in section B.2.1. These time increments were then evaluated to find inconsistencies
in the timestamps. In order for no timestamp to appear more than once and the timestamp
being monotonically increasing, the minimum time increment must be larger than 0.
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1 % Find minimum time increment
2 minInc = min ( [ min ( t imeDi f f s 77 ) min ( t imeDi f f s 107 ) ] ) ;
3 i f minInc <= 0
4 di sp ( ’ Timestamp i n c o n s i s t e n c y found ! ’ ) ;
5 e l s e
6 di sp ( ’No timestamp i n c o n s i s t e n c y found ! ’ ) ;
7 end

Listing B.14: Verification of time increments in Matlab

B.2.3 S2 - Synchronized Measurement Events

S2 Verification of the synchronized time keeping accuracy of two Etzel
devices. Synchronized measurement events.

DUT ’Etzel’ Lock-In Amplifier from Zurich Instruments

No. of DUT
and Setup

Two Etzel devices are connected via Ethernet. Time synchronization
via PTP has to be enabled.

Tested device
characteristics

Accuracy of the timestamps that are generated by two separate Etzel
devices that receive the same input pulse.

Measured
indicator

Offset from common time base. The offset is specified as the difference
between the timestamp of a PTP-Slave device to the timestamp of the
PTP-Master for the same signal input event.

Measurement
device

The data server software running on each Etzel is used to gain access
to the measurement timestamps. A computer connected to the same
network as the DUT is used to display and analyze the data.

Additional
Material

Ethernet connection between Etzels and the computer is established
via a PTP-Switch.

Duration At least multiple seconds

Input Signal Sinus wave at measurable frequency that is toggled periodically. Pos-
sibly an Etzel device could be used as signal source, thus generating
exact time stamps for the signal generation.

Comment For measurement setup see figure 6.2

Table B.19: Measurement description for the evaluation of synchronized measurement events
of two Etzel devices

Setup The setup for all measurements varied in terms of the network configuration and the
connection method to the host PC. The variants are described in detail in B.2.1.

Analysis In order to correlate measurement events in the data stream of two Etzels, a post-
processing algorithm was implemented in Matlab. Because the measurement results strongly
depend on the exact implementation of this algorithm, it is described in detail here. The
main functionality of the script (’measEventPostProcessing.m’) is described hereafter.

� Select matching measurement files from the two Etzels

� Interpolation: Since the two Etzels operate with individual clocks, the sample periods
are slightly different. In order to artificially raise and align the sample rates the data
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is interpolated using the PCHIP method with 2 additional interpolation steps. The
following listing B.15 contains the main calculations.

1 % I n t e r p o l a t i o n o f abso lu t e data on dev107 − shortened ( the same i s done f o r
dev77 acco rd ing ly )

2 step107 = tmp . dev107 . t s (2 )−tmp . dev107 . t s (1 ) ;
3 step77 = tmp . dev77 . t s (2 )−tmp . dev77 . t s (1 ) ;
4 i f ( s tep107 < step77 )
5 t sStep = step107 ;
6 e l s e
7 t sStep = step77 ;
8 end
9 a d d i t i o n a l I n t e r p S t e p s = 2 ;

10 t sStep = 1/2ˆ c e i l ( l og (1/ t sStep ) / l og (2 )+a d d i t i o n a l I n t e r p S t e p s ) ;
11 i f tmp . dev107 . t s ( end ) < tmp . dev77 . t s ( end )
12 t s I n t e r p = tmp . dev107 . t s (1 ) : t sStep : tmp . dev107 . t s ( end−1) ;
13 e l s e
14 t s I n t e r p = tmp . dev77 . t s (1 ) : t sStep : tmp . dev77 . t s ( end−1) ;
15 end
16 t s In t e rp107 = ts In te rp ’ ;
17 data107Interp = in t e rp1 (tmp . dev107 . ts , abs (tmp . dev107 . s {1}) , . . .
18 t s In t e rp , ’ pchip ’ ) ’ ;
19 % 1D data i n t e r p o l a t i o n i s c a l c u l a t e d at the timestamps de f ined in ’ t s In t e rp ’ .

The i n t e r p o l a t i o n method ’ pchip ’ r e tu rn s a p i e c e w i s e cub ic hermite
i n t e r p o l a t i n g polynomial . This method p r e s e r v e s the shape o f the o r i g i n a l
data and maintains monotonic i ty .

Listing B.15: Interpolation of data in Matlab

� Lowpass Filter (deprecated): In order to suppress noise and ease the detection
of measurement events, a zero-phase digital lowpass filter has been implemented. The
disadvantage of this method is the decrease of flank steepness. Since we are interested in
having a flank that is defined as precisely as possible, this approach has been discarded.
The idea is described in listing B.16.

1 origDataAbs107 = abs ( data107Interp ) ;
2 dLow = d e s i g n f i l t ( ’ l o w p a s s f i r ’ , ’ DesignMethod ’ , ’ e q u i r i p p l e ’ , . . .
3 ’ PassbandFrequency ’ , 0 . 0 1 , ’ StopbandFrequency ’ , 0 . 0 5 , . . .
4 ’ PassbandRipple ’ , 1 , ’ StopbandAttenuation ’ ,60) ;
5 data107F i l t e r ed = f i l t f i l t (dLow , origDataAbs107 ) ;

Listing B.16: Zero-phase lowpass filtering in Matlab (discarded)

� Edge Detection: An edge detection method was devised to detect the measurement
events. It consists of the following steps and is described in listing B.17.

– Define a threshold at the mean value of the data

– Detect crossings of the data with the threshold, each crossing is assumed to be a
measurement event

– Search pairs of events (= crossings on the data of the PTP master and of the slave
that were measured less than TS

2 = 1 ms apart)
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– For each pair: Try to find the exact time when the two devices amplitude crosses
the threshold. The time difference between these events corresponds to the final
’measurement event error’. A linear interpolation is used to calculate the estimated
timestamp. ts77,adjusted = ts77 + |threshold−data77|

| ∂data77
∂ts77

|

1 %Edge Detect ion
2 dataIntThreshold = 1/2*(mean( data107Interp ) + mean( data107Interp ) ) ;
3 k=1;
4 f o r i =1: l ength ( data107Interp )−1
5 i f ( data107Interp ( i ) < dataIntThreshold && data107Interp ( i +1) >

dataIntThreshold | | data107Interp ( i ) > dataIntThreshold && data107Interp ( i
+1) < dataIntThreshold )

6 idxThreshold107 ( k ) = i ;
7 k = k+1;
8 end
9 end

10 idxThreshold107 = idxThreshold107 ( 1 : k−1) ;
11 k=1;
12 f o r i =1: l ength ( data77Interp )−1
13 i f ( data77Interp ( i ) < dataIntThreshold && data77Interp ( i +1) >

dataIntThreshold | | data77Interp ( i ) > dataIntThreshold && data77Interp ( i +1)
< dataIntThreshold )

14 idxThreshold77 ( k ) = i ;
15 k = k+1;
16 end
17 end
18 idxThreshold77 = idxThreshold77 ( 1 : k−1) ;
19

20 % Search p a i r s o f events
21 MAX EVENT DISTANCE = 0 . 0 0 1 ;
22 pairLocs107 = ze ro s (1 , edgeS ize ) ;
23 pai rLocs77 = ze ro s (1 , edgeS i ze ) ;
24 pa i r Idx = 1 ;
25 t imeDi f fLen = 0 ;
26 l = 1 ;
27 f o r k = 1 : edgeS i ze
28 % d i f f = a − b
29 d i f f e r e n c e = t s In t e rp107 ( idxThreshold107 ( l ) ) − t s In t e rp77 ( idxThreshold77 ( k )

) ;
30 whi le abs ( d i f f e r e n c e ) > MAX EVENT DISTANCE && d i f f e r e n c e < 0 && l <

edgeS i ze
31 % Discard s i n g l e peak o f a
32 l = l + 1 ;
33 % Reca l cu la t e the d i f f
34 d i f f e r e n c e = t s In t e rp107 ( idxThreshold107 ( l ) ) − t s In t e rp77 (

idxThreshold77 ( k ) ) ;
35 end
36 i f abs ( d i f f e r e n c e ) < MAX EVENT DISTANCE
37 % Save pa i r o f peaks
38 pairLocs107 ( pa i r Idx ) = idxThreshold107 ( l ) ;
39 pai rLocs77 ( pa i r Idx ) = idxThreshold77 ( k ) ;
40 pa i r Idx = pa i r Idx + 1 ;
41

42 % Increment l f o r next round .
43 l = l +1;
44 e l s e
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45 % Discard s i n g l e peak o f b
46 end
47 end
48

49 % Timestamp i n t e r p o l a t i o n
50 f o r i = 1 : pair Idx−1
51 idx77 = pairLocs77 ( i ) ;
52 idx107 = pairLocs107 ( i ) ;
53 tsEdgeInterp77 ( i ) = t s In t e rp77 ( pa i rLocs77 ( i ) ) + abs ( dataIntThreshold −

data77Interp ( pa i rLocs77 ( i ) ) ) /abs ( d i f f 7 7 ( pa i rLocs77 ( i ) ) ) ;
54 tsEdgeInterp107 ( i ) = t s In t e rp77 ( pa i rLocs107 ( i ) ) + abs ( dataIntThreshold −

data107Interp ( pa irLocs107 ( i ) ) ) /abs ( d i f f 1 0 7 ( pa i rLocs107 ( i ) ) ) ;
55 tsEdges ( i ) = t s In t e rp107 ( pa i rLocs107 ( i ) ) ;
56 end

Listing B.17: Edge detection in Matlab

The improvement of observed measurement event error while progressing through the
algorithm is shown in the following figures compared to a threshold of the Etzel sampling
period at 1

469kSps . Whereas the observed error is huge after the initial peak search in figure
B.7a, it gets progressively better after including pair detection (figure B.7b) and ultimately
timestamp interpolation in figure B.7c.
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(c) Timestamp interpolation

Figure B.7: Incremental improvement of observed time error within edge detection algorithm
on the example of a ’E2E PTP’ measurement

The final measurement event error as depicted in B.7c still contains some periodic fre-
quency components. A superimposed sinusoidal waveform is easily recognized. It can be
attributed to the frequency shift of the doppler effect that occurs due to the slight frequency
difference of the clocks of the two Etzel devices. The observed waveform shows a period of
about 4 seconds.
The effect of the timestamp interpolation is depicted in figure B.8. The plot is taken from a
’E2E PTP’ measurement and represents a falling edge of a measurement event. The inter-
polated data is displayed with the thick blue (dev107: PTP master) and green (dev77: PTP
slave) line. A measurement is detected as crossing of the data with the threshold and the
last sample (before the crossing) is marked with a blue circle and blue cross. E.g. the blue
cross (dev77) needs to be moved to the right in order to intersect the data at the required
threshold level. The time difference that ultimately makes up the Measurement Error is the
time difference between the moved edges (red circle and red cross).
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Figure B.8: Effect of timestamp interpolation on Measurement Event Error

After seeing the significant improvements to the measurement event error after each step,
it becomes apparent that the edge detection algorithm is not perfectly accurate and still pro-
vides space for improvements.

Probability Calculation The evaluation of the measurement data under consideration of
the statistical significance in order to answer question 7.1 has been computed in Matlab using
the script ’probCalc.m’. An example for the calculation of a ’P2P’ measurement is given in
listing B.18. The results are described in section 7.2.3.

1 % Measurement 1 : P2P
2 s i g 0 = 1000 ; % ns Target Std . Dev .
3 a = 0 . 0 1 ; % Allowed P ro b a b i l i t y f o r Error o f Type I
4 p = 1−a ;
5 s = 7 9 5 . 3 ; % ns Measured Std . Dev .
6 N = 318 ; % Sample S i z e
7 ch i2 = ( (N−1) * s ˆ2 ) / ( s i g 0 ˆ2 ) ; % Chi Square S t a t i s t i c
8 x = ch i2 inv (1−a , N−1) ; % Chi−Square Inve r s e CDF

Listing B.18: Probability calculation in Matlab

Example for Data Loss in ’E2E’ Situation The effect of missing measurement data on
the edge detection is shown in figure B.9. The missing rising flank is approximated with a
very flat curve (blue), thus causing a large measurement event error.
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Figure B.9: Results plot - Edge detection failing due to missing measurement data of the
PTP slave device (dev77, cyan and blue)

B.2.4 S3 - Long-Term Consistency of Time Increments

S1 Verification of the synchronized time keeping accuracy of two Etzel
devices. Long-term consistency of time increments.

DUT ’Etzel’ Lock-In Amplifier from Zurich Instruments

No. of DUT
and Setup

Two Etzel devices are connected via Ethernet. Time synchronization
via PTP has to be enabled.

Tested device
characteristics

Consistency of time increments over a long time period.

Measured
indicator

The growth of the current time is observed. It is expected that no
inconsistencies are observed (multiple occurrences of the same times-
tamp or decrease of the time).

Measurement
device

The data server software running on each Etzel is used to gain access
to the measurement timestamps. A computer connected to the same
network as the DUT is used to display and analyze the data.

Additional
Material

Ethernet connection between Etzels and the computer is established
via a PTP-Switch.

Duration 24 hours

Input Signal Sinus wave at measurable frequency that is toggled periodically

Comment For measurement setup see figure 6.2

Table B.20: Measurement description for long-term consistency of time updates of two Etzel
devices

This measurement has not yet been performed.
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B.2.5 S4 - Long-Term Evaluation of Synchronized Measurement Events

S3 Verification of the synchronized time keeping accuracy of two Etzel
devices. Long-term evaluation of synchronized measurement
events.

All parameters except the duration are the same as in S2

Duration 24 hours

Comment For measurement setup see figure 6.2

Table B.21: Measurement description for the long-term evaluation of synchronized measure-
ment events of two Etzel devices

This measurement has not yet been performed.
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B.3 Configuration of Measurement Devices

In order to correctly interpret the results, it is important to understand the configuration and
setup of the devices that were used to perform the tests.

B.3.1 Oscilloscope

The oscilloscope that was utilized for unit tests is a Rhode & Schwarz RTO1014[22], which
offers a bandwidth of 1 GHz on 4 channels, statistical evaluation including histogram plotting
and advanced triggering options. A model RTO1024 with a bandwidth of 2 GHz was used for
the system tests. Two channels were used to connect to the PPS pin of two DUT, in order to
measure the time difference between the rising edge of the two signals. Thus measuring the
time synchronization accuracy of these devices and performing statistical evaluation.

Acquisition For most unit tests the oscilloscope was set to the highest resolution (100 ps
/ 10 GSa/s), which results in a sample memory of 5 kSa. The displayed waveforms from
screenshots are taken with 50 ns/div. The resulting range of time offsets that can be detected
amounts to ±250 ns.
In order to be able to acquire even relatively inaccurate signals, the range had to be extended
to ±500ns for U8.

Trigger Mode For most tests, a standard trigger on the rising edge over a level of 1.5 V
was applied to detect a PPS pulse. The trigger source was always set to the channel that
connected to the PPS pin of the PTP master device.
Test U6 required one (or two) DUT to be placed inside a climatic chamber with three cables
(power, Ethernet, oscilloscope probe) being run through a small service hole on top of the
chamber. The temperature control unit of the chamber causes the internal cooling unit to
be switched on or off upon the detection of certain temperatures. This switching causes
undesired noise signals to couple into the measurement setup, which results in the detection
of erroneous PPS signals. In order to avoid this incorrect detection, the trigger mode was
changed to the slew rate mode. In this mode only signals that change their amplitude from
0.5 V to 3 V within a window of 1.2 ns (±0.1 ns) are recognized as trigger events.

Statistical Functions Since the oscilloscope is set to trigger on the PPS of the first DUT,
the measurement of the PPS of the second DUT automatically results in the wanted time
difference. Thus the statistical function was applied to the second channel. The statistical
evaluation allows for a restriction of the detected signals in relation to the horizontal and
vertical domain of the current capture buffer. For most tests the horizontal restriction was
set to allow 100% of the range and the vertical restriction was set to the same 1.5 V as
the trigger was set. For U6 the vertical restriction was set to 3 V in order to more closely
represent the slew rate trigger mode. Additionally for certain subtests11 in U6 the horizontal
restriction was set to 10% before and 10% after the 0 ns offset to reduce the influence of any
noise signal.

11The tests requiring the use of the cooling unit (5◦C and 10◦C) were especially susceptible to noise generated
by switching.
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B.3.2 Climatic Chamber

The climatic chamber used to generate various ambient temperatures is of the type ’Heraeus
Vötsch VMT 04/16’. It spans a range of -40◦C to 130◦C and is specified to heat up at
4.5◦C/min and cool down at 3.0◦C/min.12

B.4 Hardware Specifications

B.4.1 Etzel FPGA Crystal Oscillator

Description Value

Reference frequency (nominal) 10 MHz

Reference initial accuracy ±0.5 ppm

Reference short term stability (over 30s) <0.00005 ppm

Reference long term stability (aging) +/- 0.4 ppm / year

Reference temperature stability at 23◦ +/-5◦ C +/-0.03 ppm/◦

Reference phase noise @ 100 Hz -130 dBc/Hz

Reference phase noise @ 1 kHz -140 dBc/Hz

Time to reach specification @ 25◦ C 60 s

Table B.22: Specifications of the high stability quartz oscillator used in the time stamping
unit of Etzel

B.4.2 Ethernet Controller Crystal Oscillator

As defined in the datasheet for the ’Horizon Enterprises’ HEOC33-SMD Crystal Oscillator13.

Description Value

Reference frequency (nominal) 25 MHz

Reference initial accuracy ±25 ppm

Reference short term stability (over 30s) not specified

Reference long term stability (aging) +/- 3 ppm / year (first year)

Reference temperature stability at 23◦ +/-5◦ C not specified

Reference phase noise @ 100 Hz not specified

Reference phase noise @ 1 kHz not specified

Time to reach specification 10 ms max.

Table B.23: Specifications of the high stability quartz oscillator used for the Ethernet con-
troller of both the Apalis development board and the Etzel

12In the required range of 5◦C to 40◦C.
13Available online at http://www.horizonxtal.com/02pdf/heoc33.pdf. Last visit: 21.11.2014
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B.4.3 Non PTP-Capable Ethernet Switch

Description Value

Manufacturer and Type Zyxel GS-108B

Device Description 8-Port Desktop Gigabit Ethernet Switch

Ports
Eight RJ-45 10/100/1000 Mbps Ethernet ports with auto
MDI/MDIX support. Two high-priority QoS ports and two
medium-priority QoS ports.

Transmission method Store-and-forward architecture

Operating Voltage 9 V DC, 0.85 A

Time Synchronisation N/A

Table B.24: Specifications of the generic Ethernet switch ’Zyxel GS-108B’

B.4.4 PTP-Capable Ethernet Switch

Description Value

Manufacturer and Type Hirschmann RSP35

Device Description
Managed, Industrial Switch DIN Rail, fanless design. Fast
Ethernet, Gigabit Uplink type. Enhanced Redundancy
(PRP, Fast MRP, HSR).

Ports
11 Ports in total, thereof Fast Ethernet ports: 8 x
10/100BASE TX / RJ45; therof Uplink ports: 3 x Giga-
bit Ethernet SFP slots (1000 MBit).

Operating Voltage
1 x 60/110/125/220/250 VDC (48 V-320 VDC) and
110/120/220/230 VAC (88-265 VAC)

Time Synchronisation PTPv2 TC two-step, SNTP server and client, Buffered RTC

Table B.25: Specifications of the PTP Ethernet switch ’Hirschmann RSP35’

B.5 Software Tools

� Apalis BSP v2.2 (Kernel 3.1.10-g277321a-dirty) and BSP v2.3

� Cross compilation toolchain: arm-linux-gnueabihf-g++ (crosstool-NG linaro-1.13.1-2012.09-
20120921 - Linaro GCC 2012.09) 4.7.2 20120910 (prerelease)

� ZI LabOne version Linux64-14.08.26352 containing ziWebServer

� Wireshark 1.6.7

� Libreoffice Draw 3.5.7.2

� Latex: texlive, TeXstudio

� Matlab R2014a

� pdfcrop
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