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European characteristic modes

 The Continental European Synchronous Area (CE SA) is entsod
characterized by different interarea modes: E-W, E-C-W, { Mt etk

of Continental Europe
2023

and N-S. s

‘Scate: 1:2.500.000

* Todetect the presence and magnitude of such oscillations,
the TSO monitors the network through WAMS.

* Inthiswork, several advanced mathematical techniques
such as Estimation of Signal Parameters via Rotational i
Invariance Techniqgues (ESPRIT), Tuft-Kumaresan (TK),and  ©
Stochastic Subspace Identification (SSI) are introduced and
compared with respect to conventional techniques such as
Dynamic Mode Decomposition (DMD) [1,2] and the
combination of PCA with Prony (PP)[3].
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Proposed approaches

ESPRIT is a high-resolution algorithm for TKis alinear prediction method that SSlis a data-driven approach used to
estimating the frequency and damping of estimates the poles of a signal by solving a extract dynamic system characteristics
complex exponentials embedded in noise linear system constructed from samples [5].  based solely on output measurements [6].
[4]. It exploits the rotational invariance The TKmethod is based on autoregressive  The SSlis based on the discrete-time
property of signal subspaces derived from modeling and the exploitation of the signal’'s  stochastic state-space model.
the covariance matrix. linear prediction properties.
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Energy-based alarm

Once the dominant modes have been identified, the signal x(t) can be approximated as a sum of these modes:

T
x(t) = Z X;ePit
i=1

The coefficients X; can be estimated by solving a linear system involving a Vandermonde matrix constructed from the modal poles p;. Each
coefficient X; is a complex number representing both the initial amplitude and phase angle of the corresponding mode.

Let us consider the mode p; characterized by a specific frequency @;. The objective is to ensure that the energy of this mode remains low. To
this end, the energy E; can be computed as follows:

ol To =2 o2 1 _
E; =j |X;ePit | = |Xi| f p2Re(PDt ¢
The analytical solution is given by: ’ 0
_ 5 @2Re(PDT-1
5 | ey i Re@) # 0

|5’ if Re(F7) = 0
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Benchmark systems

Two-area Kundur system
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Oscillatory event in the European power system on December 15t, 2016

The first real-world event analyzed concerns the interarea oscillations that affected the European power system on December 1st, 2016.
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Oscillatory event in the European power system on December 15t, 2016
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Oscillatory event in the European power system on December 39, 2017

The second real-world event analyzed concerns the interarea oscillations that affected the European power system on December 3rd, 2017.
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Oscillatory event in the European power system on December 39, 2017
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Normal grid operation in March 2021
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Iberian Power System Blackout on April 28t", 2025

+ MedFasee is anindependent observatory dedicated to monitoring power
system dynamics, currently operating 40 PMUs across South Americaand 4
PMUs in Europe.

* TheMedFasee project started with the partnership between UFSC and Reason
through a public financing agreement (FINEP agency) in 2003.

«  Currently, three power system observatories are in operation: Brazilian
observatory (medfasee.ufsc.br), South American observatory
(medfasee.ufsc.br/conosur), and European observatory
(medfasee.ufsc.br/europe).
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Iberian Power System Blackout on April 28t", 2025
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Conclusion

* Inthiswork, ESPRIT, TK and SSI have been applied to study electromechanical oscillations in a power system.
+ Allthe proposed approaches have been validated against modal analysis, which serves as the ground truth.
« They consistently demonstrate superior performance compared to state-of-the-art methods, particularly in estimating mode damping.

* Theapproaches have been tested on multiple real-world events, including the oscillatory events of 2016, 2017, and 2025, as well as under
ambient conditions, ensuring that they do not generate false alarms.

« They are capable of computing frequency, damping, mode shapes, and energy for triggering purposes.
« All proposed approaches are sufficiently fast for real-time implementation.

« They perform effectively even with limited datasets, such as MedFasee dataset.
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Real-Time Detection of Islanding Events via Low-Rank
Subspace Clustering
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Motivation

* One of the main stability concerns faced by TSOs is the
occurrence of system islanding, where a portion of the
power grid becomes electrically isolated from the rest of the
network.

« Uncontrolledislanding occurs due to disturbances and does
not align with the utility’s operational strategy. Such
unintentional separation can cause significant frequency
and angle deviations within the isolated region, depending
on local power imbalances and system inertia. If not properly
managed, these deviations may compromise the stability
of the islanded system.

* Inthiswork, the coreideais to form coherent clusters from
PMU measurements and, by analyzing their mutual
Euclidean distances, distinguish between different
dynamic phenomena. This clustering-based approach
enables the detection of network islanding events as well as
naturally occurring electromechanical oscillations within the
interconnected power grid.

s North-West area

msmmmmm  South-East area
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Clustering in the low-rank subspace

Model Order Reduction techniques,
particularly Principal Component Analysis
[1]. are employed to project high-
dimensional measurement data onto a
lower-dimensional eigenspace, where
hidden structure can be easily identified.

X1,t4 X1,t)
¥ = . i
XN,tq XNty
W =AW
Wm = Vl Vm
Y = XW,,
MOR

Within this reduced space, Hierarchical
Agglomerative Clusteringis applied to
identify groups of coherent PMU signals[2].
HAC is a machine learning and data analysis
method that incrementally merges similar
elements into increasingly larger clusters[3].
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Mutual Euclidean distances and the global
silhouette index [4] are employed as
metrics to distinguish between different
dynamic phenomena.
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Normal grid operation in 2021

Low-rank subspace
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Normal grid operation in 2021 - coherent areas
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Continental Europe Synchronous Area Separation on January 08t", 2021
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Oscillatory event in the European power system on December 15t, 2016
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Iberian Power System Blackout on April 28t", 2025
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Computation was halted
following the blackout, as
two of the three PMUs
were out of service.
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Conclusion

The proposed approach employs low-rank subspace projection and clustering to group PMU measurements.

- MED and S, are used to identify different possible scenarios within the power system, such as ambient conditions, electromechanical
oscillations, or network separations.

- MED provides a measure of distance between clusters, while §, evaluates the quality of clustering.
« Thealgoritnm has been tested on various scenarios, including the 2021 CE SA separation, the 2016 oscillatory event, ambient
conditions, and the 2025 Iberian power system blackout. It performed well across all scenarios, enabling operators to quickly

understand the type of event affecting the power system.

« Furthermore, the proposed approach proves highly effective in identifying coherent areas under ambient conditions, i.e., during normal
frequency fluctuations.

- Lastly, a similar approach was proposed in [2] to group power system buses based solely on voltage measurements, and it was shown to
be effective.
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