

Simultane Wärme- und Kälteversorgung von Eissportanlagen

Ausgangslage.

Moderne Kältemaschinen von Eissportanlagen stellen neben der benötigten Kälteleistung für die Kühlung des Eises ebenfalls einen Teil der im Gebäude benötigten Wärmeenergie bereit. Da Kältekreisläufe mit CO₂ als Kältemittel im transkritischen Bereich eine grosse Temperaturspreizung aufweisen, eignet sich bei diesen Anlagen eine Wärmenutzung auf unterschiedlichen Temperaturniveaus (Abb. I)

Analyse

Die Wärmenutzung der Sportanlage Heuriet (ZH) wurde in einer Studentenarbeit untersuch. Im T-s-Diagramm (Abb.2) werden die gegenläufigen Verluste anhand der Entropie- und Temperaturdifferenzen deutlich.

Ergebnisse

Durch die Minimierung des Gesamtexergieverlustes konnte das optimale Druckniveau in Abhängigkeit einer bestimmten minimalen Temperaturdifferenz im Wärmeübertrager und einem definierten Wärmeauskopplungsverhältnis bestimmt werden. In der Exergo-ökonomischen Analyse wurden dem Exergieverlust sowie der Wärmeübertragerfläche Jahreskosten zugeordnet (Abb.3).

Als Ergebnis konnten optimale Betriebs- und Auslegungskriterien für die Kälteanlage ermittelt werden.

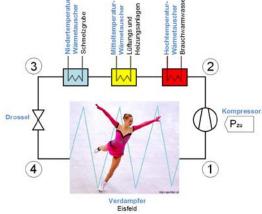


Abb.1: Wärmeauskopplung auf unterschiedlichen Temperaturniveaus in einer Eissportanlage

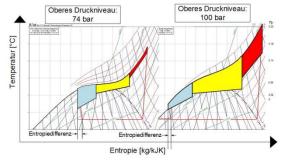
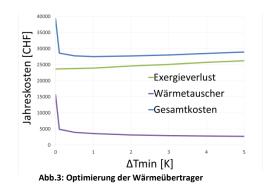



Abb.2: Exergetische Verluste bei der Drosselung und in den Wärmeübertragern bei verschiedenen Druckniveaus

ZHAW School of Engineering

Technikumstrasse 9 8400 Winterthur info@engineering.zhaw.ch www.engineering.zhaw.ch

IEFE Institut für Energiesysteme und Fluid-Engineering

Dr. Thomas Bergmann
Technikumstrasse 9
8401 Winterthur
Telefon +41 58 934 05
thomas.bergmann@zhaw.ch
www.iefe.zhaw.ch