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Meine Person

Anna Drewek

• Dozentin für statistische Datenanalyse am IDP, SoE
• Dr. sc. ETH Zürich (Mathematik / Biostatistik)

und die Kausalität
• Ausbildung: Masterarbeit, Seminare
• Projekte: Optimale Therapie bei MS
• Lehre: Modul im Master of Science in Engineering (MSE)
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Was ist Kausalität?

Hast du heute schon überlegt 20 Tassen Kaffee
zu trinken, um produktiver zu sein?

Das sagt ChatGPT:

20 Tassen Kaffee? Das klingt nach einer echten Koffein-Überdosis!
Kurz gesagt: Nein, das macht dich nicht produktiver – eher das Gegenteil. Bei 20
Tassen kommt es zu Überstimulation (Nervosität, Zittern, Herzrasen), zu kognitive
Einbussen (Konzentration sinkt, Fehlerquote steigt) und zu steigendem
Gesundheitsrisiko. 20 Tassen sind in etwa 1.6–2 g Koffein, das kann gefährlich sein
(Herzrhythmusstörungen, im Extremfall toxisch).
Besserer Ansatz genug Wasser trinken, Pausen machen und Bewegung einbauen.
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Was ist Kausalität?

Hast du heute schon überlegt 20 Tassen Kaffee
zu trinken, um produktiver zu sein?

Das sagt ChatGPT zu mir als “Wissenschaflerin”:

Wenn du fragst: “Machen 20 Kaffees mich produktiver?”, dann ist das eine kausale
Hypothese: X = Kaffeekonsum, Y = Produktivität. Und du willst wissen, ob X → Y
gilt und wie stark.
Ob 20 Kaffees dich produktiver machen, hängt stark von deinem Körper, deiner
Gewöhnung an Koffein und dem Kontext ab – aber wissenschaftlich betrachtet ist das
eher unwahrscheinlich und kann sogar kontraproduktiv sein. Die Forschung sagt,
moderate Mengen (ca. 1–3 Tassen Kaffee) können die Konzentration, Wachheit und
Reaktionszeit verbessern. Zu viel Koffein (wie bei 20 Tassen) kann hingegen zu
Nervosität, Schlafstörungen, Herzrasen, Zittern, Konzentrationsproblemen führen -
also genau das Gegenteil von Produktivität.
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Was ist Kausalität?

Hast du heute schon überlegt 20 Tassen Kaffee
zu trinken, um produktiver zu sein?

Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein

Kausales graphisches Modell:
Knoten = Zufallvariablen
Gerichtete Kanten = kausale
Effekte

Statistikertreffen 5/28



Was ist Kausalität?

Ein kausales graphisches Modell sagt nichts über die Stärke oder die Art der
Beziehungen aus.

Beispiel 1: Rasensprenger
X = Rasensprenger
Y = Nasser Boden
Z = Rutschig

Beispiel 2: Wettrennen
X = Arbeitsstunden
Y = Zeit für Training
Z = Rennergebnis

Beispiel 3: Lampe
X = Lichtschalter (an/aus)
Y = Status Elektrischer Schaltkreis
Z = Lampe (an/aus)

Alle Beispiele haben folgendes Modell:

X Y Z

ABER Beziehungen sind unterschiedlich:
• positiv (Beispiel 1)
• negativ (Beispiel 2)
• diskret, nicht linear (Beispiel 3)
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Was ist Kausalität?

Schuhgrösse und Gehalt
Was sagt uns ein ML-Modell im Hinblick auf die folgende Aufgabe und die
gegebenen Daten?
Aufgabe: Vorhersage des Gehalts
Daten: Schuhgrösse und Gehalt von 40 Personen
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→ Regression führt zu einem
guten Modell mit R2 = 0.68.

Was können wir daraus
schliessen?
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Was ist Kausalität?

Was können wir daraus schliessen?
Wir können nicht schliessen: Das Tragen grösserer Schuhe verursacht ein
höheres Gehalt!

Warum?

Schuhgrösse Gehalt

Geschlecht

→ Ein Zusammenhang bedeutet nicht, dass dieser kausal ist.
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Informationsfluss

Wie können wir überprüfen, ob ein kausaler Effekt vorliegt?

• Zwei Variablen, die durch eine
Kante verbunden sind, sind
miteinander abhängig.

• Kausale Effekte werden entlang
der Richtung der Pfeile
transportiert.

• Es gibt zwei Arten von kausalen
Pfaden: direkte und indirekte.

• Der totale kausale Effekt ergibt
sich als Summe von allen
direkten plus indirekten Effekten.

Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein

Schuhgrösse Gehalt

Geschlecht
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Informationsfluss

Grundbausteine eines Graphen

X Y Z

X

Y Z

X Y

Z

Chain
X und Z sind bedingt
unabhängig gegeben Y

Fork
Y und Z sind bedingt
unabhängig gegeben X

Collider
X und Y sind unabhängig,
aber bedingt abhängig
gegeben Z

Was können wir über Unabhängigkeit sagen, wenn wir einen komplexen
Graphen mit Pfaden aus mehreren Bausteinen haben?
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Informationsfluss

D-Separation

Allgemeine Definition Ein Pfad p ist durch eine Menge von Knoten Z
blockiert, genau dann, wenn

• p eine chain (A → B → C) or eine fork (A ← B → C) enthält, wobei der
mittlere Knoten B in Z enthalten ist (d.h. es wird auf B bedingt), ODER

• p einen Collider (A → B ← C) enthält, wobei der Kollisionsknoten B
nicht in Z enthalten ist und kein Nachfahre von B in Z liegt.

Wenn Z jeden Pfad zwischen zwei Knoten X und Y blockiert, dann sind X und
Y d-separiert gegeben Z und somit bedingt unabhängig gegeben Z.

Bemerkung: Wenn auch nur ein Pfad zwischen X und Y nicht blockiert ist,
sind X und Y nicht d-separiert.
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Informationsfluss

D-Separation

• D-Separation von Gehalt und
Schuhgrösse?
Es muss auf Geschlecht bedingt
werden.

• D-Separation von Kaffee und
Produktivität?
Nicht möglich da Nachbarn.

• D-Separation von Kaffee und
Schlaf
Es muss auf Koffein bedingt
werden.

Schuhgrösse Gehalt

Geschlecht

Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein
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Intervention

Wie können wir überprüfen, ob ein kausaler Effekt vorliegt?

Wenn es einen kausalen Effekt gibt, dann
sollte das Manipulieren der Schuhgrösse bzw.
der Anzahl Kaffees die Verteilung des
Gehalts bzw. der Produktivität verändern.

Schuhgrösse Gehalt

Geschlecht

Definition einer Intervention (Pearl):
do(X = x) stellt eine hypothetische Intervention dar, bei der X auf den Wert x
gesetzt wird – einheitlich über die gesamte Population hinweg.

Beispiele:

• do(Schuhe = 45), d.h. alle Personen müssen Schuhgrösse 45 tragen.
• do(Kaffee = 10), d.h. alle Personen müssen 10 Tassen Kaffee trinken.
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Intervention

Hast du heute schon überlegt 20 Tassen Kaffee
zu trinken, um produktiver zu sein?
Warum Intervention und nicht auf etwas bedingen?

P(Pr = hoch | Kaffee < 20) < P(Pr = hoch | Kaffee ≥ 20)

• Die Produktivität der Personen, welche mehr als 20
Kaffees getrunken haben, ist höher als diejenigen
welche weniger als 20 Kaffees getrunken haben.

• Es könnte am Kaffee liegen, aber auch andere Gründe
haben . . .

P(Pr = hoch | do(Kaffee < 20)) < P(Pr = hoch | do(Kaffee ≥ 20))

• Die Produktivität ist für alle höher, wenn mehr als 20
Kaffees getrunken werden, d.h. Kaffee hat einen
gesicherten kausalen Effekt auf Produktivität.

Meist gilt: P(Y = y | X = x) ̸= P(Y = y | do(X = x))
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Daten

Was passiert, wenn wir die Personen zufällig in 2 Gruppen einteilen?

Zugehörige kausale Graphen

Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein

Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein
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Daten

In einem kontrollierten Experiment werden Personen/Objekte so zugewiesen,
dass es keine systematischen Unterschiede zwischen den untersuchenden
Gruppen gibt – ausser der Behandlung selbst.

Dies stellt sicher, dass die Gruppen vergleichbar sind, da die Verbindung
zwischen möglichen Störfaktoren (Confounder) und der Behandlung gestört ist.

Jedoch sind kontrollierte Experimente nicht immer möglich:

• ethische Gründe
• Unmöglichkeit

→ Daten werden als Beobachtungsdaten (observational data) bezeichnet,
wenn die Daten aus natürlich auftretenden Ereignissen stammen. Hier braucht
es kausale Graphen und Adjustierung, um kausale Effekte zu berechnen.

Statistikertreffen 16/28



Intervention

Intervention verändert die Verteilung

3 verschiedene kausale Beziehungen zwischen X und Y

X Y X Y
X Y

Z

mit identischen gemeinsamen Verteilungen von X und Y:

x <- rnorm(n)
y <- 1 + x + rnorm(n)

−3 −2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

x

y

y <- 1 + sqrt(2)*rnorm(n)
x <- (y-1)/2 + rnorm(n)/sqrt(2)
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z <- rnorm(n)
y <- 1 + z + rnorm(n)
x <- z
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Intervention

Intervention verändert die Verteilung

Wir führen die Intervention do(X = 2) durch:

x <- rep(2,n)
y <- 1 + x + rnorm(n)
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y <- 1 + sqrt(2)*rnorm(n)
x <- rep(2,n)
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z <- rnorm(n)
y <- 1 + z + rnorm(n)
x <- rep(2,n)
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Manipulierte kausale Graphen:

X Y X Y
X Y

Z
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Intervention

Intervention verändert die Verteilung
Vergleich der bedingten Verteilung und der Interventionsverteilung
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Die gemeinsame Verteilung der Daten reicht nicht aus, um das Verhalten
unter Intervention vorherzusagen. Nur mit dem kausalen Graphen ist es
möglich, vorherzusagen, wie sich das Modell unter Intervention verhalten wird.
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Kausaler Effekt

Wie können wir überprüfen, ob ein kausaler Effekt vorliegt?

Hast du heute schon überlegt 20 Tassen Kaffee zu trinken,
um produktiver zu sein?

Hypothetische Interventionen:
• Intervention 1: Jeder muss mehr als 20 Kaffees trinken

P(Pr = hoch | do(Kaffee ≥ 20))
• Intervention 2: Keiner darf mehr als 20 Kaffees trinken

P(Pr = hoch | do(Kaffee < 20))

Average Causal Effect:
P(Pr = hoch | do(Kaffee ≥ 20)) - P(Pr = hoch | do(Kaffee < 20))

Fundamentales Problem der Kausalität
Wir können niemals dasselbe Objekt für jeden möglichen Wert von X
beobachten.
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Adjustierung

Wie lässt sich P(Y = y | do(X = x)) berechnen?

• Es wird versucht P(Y = y | do(X = x)) in Form einer bedingten
Wahrscheinlichkeiten P(Y = y | X = x) auszudrücken.

• Hierfür werden Invarianzen im Bezug auf den Inventionsgraphen genützt.
• Wenn dies gelingt, dann konnten Störfaktoren durch Adjustierung

erfolgreich entfernt werden.
• Wenn es keine Möglichkeit zur Adjustierung gibt, ist der kausale Effekt

aus Beobachtungsdaten nicht identifizierbar.

Was gibt es für Adjustierungen?
• Parental Adjustment
• Backdoor Adjustment
• Frontdoor Adjustment
• . . . Arbeitsstunden

Schlaf

ProduktivitätKaffeekonsum

Menge Koffein
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Adjustierung

Schuhgrösse und Gehalt

Schuhgrösse Gehalt

Geschlecht

Ohne Adjustierung
fit <- lm(salary ~ shoes)
summary(fit)

Estimate Pr(>|t|)
(Intercept) -176.2567 0.0044
shoes 7.7012 0.0000

Mit Adjustierung
fit <- lm(salary ~ shoes + gender)
summary(fit)

Estimate Pr(>|t|)
(Intercept) 159.5634 0.0433
shoes -1.5890 0.4425
genderM 65.4461 0.0000
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Adjustierung

In komplexeren Graphen gibt es meist mehrere Möglichkeiten der Adjustierung:

Beispiel

X1 ← E1

X2 ← E2

X3 ← E3

X4 ← 1 · X5 + E5

X5 ← 1 · X1 + 1 · X2 + E5

X6 ← 1 · X2 + 1 · X3 + 3 · X5 + E6

X7 ← 2 · X6 + E7

X1 X2 X3

X4 X5 X6 X7

1 1 1 1

1 3 2

Totaler kausaler Effekt von X5 auf
X7: 3 · 2 = 6.

Hier gibt es 8 mögliche Adjustierungssets:
{X2} (minimal), {X2, X1} (parents), {X2, X3}, {X2, X4},
{X2, X1, X3}, {X2, X1, X4}, {X2, X3, X4}, {X2, X1, X3, X4}
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Adjustierung

Welche Adjustierung sollte man benutzen?
Wir simulieren N = 1000 Datensätze und schätzen den kausalen Effekt mit
den verschiedenen Adjustierungssets.
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Wahrer kausaler Effekt
X2 (Min)
X2,X1 (Parental)
X2,X3
X2,X4
X1,X2,X3

Es bestehen grosse
Unterschiede in der Varianz.

Henckel et al. 2019
Das Adjustierungsset mit der kleinsten asymptotischen Varianz für den
kausalen Effekt von X auf Y ist pa(cn(X,Y)) without forb(X,Y)
cn = alle kausalen Knoten
forb = alle Nachfahren kausaler Knoten inklusive X
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Beispiel

Beispiel: Kündigungen
In einem IT Unternehmen mit 378 Mitarbeitenden
kam es zu einer Entlassungswelle.
Wurde mehrheitlich den Frauen gekündigt?

Männer Frauen
Entlassen 35.05% (68/194) 40.76% (75/184)

Bleibt 64.94% (126/194) 59.23% (109/184)
Männer Frauen

Entlassungswahrscheinlichkeit

0.0
0.1
0.2
0.3
0.4
0.5

→ Frauen haben ein um 14% höheres Risiko, entlassen zu werden!

Schritt 1: Annahme eines kausalen Graphen

Geschlecht Entlassung

Abteilung

Abteilung als Störfaktor
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Beispiel

Beispiel: Kündigungen
In einem IT Unternehmen mit 378 Mitarbeitenden
kam es zu einer Entlassungswelle.
Wurde mehrheitlich den Frauen gekündigt?
Kausaler Effekt von Interesse:
P(Entlassen = ja | do(Sex = F)) - P(Entlassen = ja | do(Sex = M))

Schritt 2: Berechnung der Intervention mittels Adjustieren

P(Entlassen = ja | do(Sex = F)) =
∑

d∈Abt

P(Entlassen = ja | Sex = F, Abt = d) · P(Abt = d)

P(Entlassen = ja | do(Sex = M)) =
∑

d∈Abt

P(Entlassen = ja | Sex = M, Abt = d) · P(Abt = d)

Schritt 3: Kausaler Effekt = 0.374 - 0.382 = -0.008
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Kausale Modelle

Ladder of Pearl
• Association:

• Wie hoch ist die erwartete
Lebensdauer einer Person, die
sich vegetarisch ernährt?

• Personen, die Aspirin
einnehmen, haben tendenziell
weniger Kopfschmerzen.

• Intervention:
• Wie würde sich meine erwartete Lebensdauer verändern, wenn ich

Vegetarier werde?
• Wenn ich Aspirin nehme, wird mein Kopfschmerz gelindert?

• Counterfactuals:
• Wäre mein Grossvater noch am Leben, wenn er Vegetarier gewesen wäre?
• Wären meine Kopfschmerzen auch verschwunden, wenn ich das Aspirin

nicht genommen hätte?
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Kausalität

Vielen Dank für Eure Aufmerksamkeit!

Fragen?
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