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Neural Nets: Forecasting

Review of international forecast competitions

Before 2015: classic linear approaches win
o M1 (1982), M2 (1993), M3 (2000), NN3 (2007) and NN5
(2009) competitions
Recently: hybrid approaches based on a mix of ARIMA and
neural nets outperform
o M4 (2020) and M5 (2021)

Accruing interest in neural nets for forecasting (in particular
economic time series)

e BUT... Black Box
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Black-Box: Why We Need Explainability

Let's consider the 'Husky vs Wolf" experiment results.

Predicted: husky Predicted.
True: husky True:

Predicted: Predicted: husky Predicted:
True: husky True: husky True:

@ The classifier makes one mistake!
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Why Do We Need Explainability?

Next, we investigate which features drive the classification.

Predicted: Predicted: husky Predicted:
True: True: husky True:

.
Predicted: Predicted: husky Predicted:
True: husky True: husky True:

@ The decision is based on white patches
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Why Do We Need Explainability?

@ Verify that accuracy is the result of proper problem
representation
e The model is capturing relevant dependencies between
features.
o This ensures trust in the system.

e Communication: convince layperson

o Regulation demands it.

No black box excuses - explainability/traceability of models is necessary and can improve the
analysis process | It is the responsibility of supervised firms to ensure that BDAl-based decisions can be
explained and are understood by third-party experts. Supervisory authorities take a critical view of models
that are categorised purely as black boxes. New approaches allow firms using such models to at least gain
some insight into how these models work and identify the reasons behind decisions. In addition, a better
understanding of models provides an opportunity to improve the analysis process — allowing, for instance,
the responsible units in the supervised firm to identify statistical problems.

Figure: Extract: Bafin Al and Big Data Report 2020
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Deploying Explainability: Zoo of XAl models
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Maksymiuk et al. (2021) model-oriented taxonomy for XAl method

Linardatos et al. (2021) taxonomy mind-map of Machine
Learning Interpretability Techniques.

Figure: Machine Learning Interpretability Techniques
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Deploying Explainability: Utility of Classical XAl Methods

for Finance

o Classic approaches are data-intensive (sometimes
odd/difficult to explain...)
@ Address 'data-intensiveness’
o Create 'fake’ data (simulation) or
o Shuffle available data
o Creating 'fake’ data: contradiction (don't know true model)

e Shuffling: kills dependencies (trends, vola-cluster,
draw-downs, extreme events, ...): a 09-27-2022 observation
could sit next to a 01-03-1999 observation

o Key limitation: many classical methods ignore feature
dependence
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Explainability Example: Classic Regression

o Let
Yt = 1 + 0-5X1,t + 1'4X2,t' + €+
o Interpretation: what is the meaning of the parameters?
Partial Derivative!!!!
e Communication: regression is 'well-known'’

e Validation: confront model to common sense/expert
knowledge/experience
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New XAl-Tool

© Preserve dependence (no shuffling)
@ Avoid 'fake’ (no simulation)

@ Link to regression (no exoticism)
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NN in a 'Regression’ Perspective

o Consider exact 'regression’ replication of net: partial
derivatives

y1 = NN (Input(l)l, Input(2)1, Input(3)1
= 0.1+ 0.2Input(1); + 0.3Input(2); — 0.2Input(3),
y» = NN (Input(l)g, Input(2)2, Input(3)2

= 0.15+ 0.23Input(1), + 0.36Input(2), — 0.18Input(3),

y¢ = NN (Input(l)t, Input(2), Input(3)t)
= bt + widnput(1), + worInput(2), + wseInput(3),
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XAl-Tool LPD (Linear Parameter Data)

e LPD: Data Transformation
Input(1)s, Input(2)¢, Input(3): — LPDy¢ := by, war, wor, wat
o Dimension T*n-dim (n=number of inputs) irrespective of
NN-architecture
@ New: time-dependent intercept b;, see paper
o Differs from classic gradient approaches (saliency-maps,...)
o Non-linear signal extraction (estimate of local time-dependent
drift)
e Derivation of LPD: see paper
e Generalization of LPD: X-functions, see paper

o Can address departure from linearity, overfitting, trading
performances
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Application of LPD to BTC Crypto-Currency
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Figure: SP500: log-prices and log-returns

@ Advise against an application of NN to trending data, see
paper
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Neural Net

@ Forecast tomorrows log-return of BTC based on last week's
data

BTCr.1 = NN(BTCy,BTCr_1,...,BTCr_s)

@ NN is a neural net with a single hidden layer with 100 neurons

e LPD: drift and weights assigned to
BTC+,BTCy_1,...,BTCr_5

LPD; = (bt, Wit, Wot, W3¢, Wat, Whst, W6t)
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Mean LPD of All Input Variables

Mean out-of-sample LPD of 100 random nets
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XAI-Outcome: Explain the Net!

e XAlI: first order linear approximation
e Neural net is close to an unassuming equally-weighted

MA(6)-filter
1 100 1 6
o =155 ; o:; = LPD; < < ) ~ 0.0015 + 0.065 ;xjt

@ Can gain "trust’ in the forecast (simple forecast heuristic)
@ Unfortunately not very useful

@ But... Let's look at the second order departures from
linearity
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Mean LPD of All Input Variables

Mean out-of-sample LPD of 100 random nets
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Risk-Management (RM)

o Idea
o Identify 'uncertain times’ or 'unusual states’ of the market
in real-time
o Downsize market exposure during uncertain times/unusual
states
o lIdentification of uncertain times and unusual states
o Unusually weak LPD (weak dependence structure): see Paper
e Unusually strong QPD (strong non-linearity: see paper)
o Uncertainty: spreading LPDs (see paper)

@ RM: does not rely on forecasting at all!l!
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Market-Exit when |LPD| Weak (Critical Time)

@ Out-of-sample performances: net is trained up to 01-01-2018

y—and-hold (black) vs. LPD-down (blue): < 1/7-quantile, length 90, la

Buy-and=hold: Sharpe ratio 0.7
LPD < 1/7-quantile: Sharpe ratio 1.3
(Scaled and shifted) LPD lag 6
~ I
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2018-04-02 2019-01-16 2019-10-28 2020-08-10 2021-05-23
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Next-Day's Cumulated Performance at Critical Time-Points
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Analysis: Critical, Neutral and Auspicious Time

Next day’s mean return
Today's LPD: Weak dependence -0.509%
Today's LPD: Normal dependence 0.244%
Today's LPD: Strong dependence 0.305%
All time points  0.142%

@ Novel RM-tool: does not rely on 'direction’ (NN-forecasts
are ignored!!!)
@ Does not rely on volatility

@ Does rely on market dependence structure: weak
dependence might by due to panic/herding/overreaction

@ Orthogonal to classic RM-approaches
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Application to S&P500

o Equity-index is subject to protracted down-turns during
economic recessions
e Frequency: once per decade
o Duration: half a year (at climax)
o Unconditional probability: 0.5/10=1/20 (quantile)
@ Risk-management: exit-market in case of 'severe’
down-turns
o LPD < own historical 1/20 quantile (rolling-window)
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Novelty: LPD-Intercept

@ XAl-tool relies on LPD-intercept, see paper
e Differs from classic gradient approaches to XAl
(saliency-maps,...)
@ Intercept is estimate of local drift in returns

e Close to non-linear signal extraction: extraction of
trend/drift for non-stationary DGP
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LPD Market-Exit Signals: 'Red’ Below 'Black’

@ Yellow area: out-of-sample (Pandemy); green area: 'truly’
out-of-sample (inflation, interest rate hikes, Russian invasion)

LPD-intercept (red) and rolling quantile (black)

I
0.000472

T
0.000246

©

I
I
L o
=]
=1
(=]
2010-01-04 2014-03-31 2018-06-25 2022-09-21

Marc Wildi: ZHAW, marc.wildi@zhaw.ch Branka Hadji Misheva:



S&P500: LPD vs. Buy-and-Hold

Buy-and-hold (black) vs. LPD (blue) and ouperformance (orange)

Buy-and-=hold: Sharpe ratio 0.48 S
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Draw-downs: LPD vs. Buy-and-Hold

Drawdowns: buy—and-hold (black) vs. LPD (blue)
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Market-Exit if NN-Forecast Small/Negative (Bad Outlook)

@ Conventional directional RM-tool: exit market if NN-forecast
small/negative (< 1/20 quantile)

Buy-and-hold (black) vs. LPD (blue) and ouperformance (orange)

Buy-and-hold: Sharpe ratio 0.48 -
LPD<5%, Sharpe ratio 0.67
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LPD vs. Forecasts

o Forecasts are less informative than LPD (non-linear signal
extraction)

@ LPD much less noisy! (smooth drift estimate)

@ LPD faster than linear MA-filters (NN reacts immediately if
data-point 'suspect’)
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e XAl tool: exact, fast, clear/interpretable, preserve data
integrity (no 'fake’, do not alter dependence)
e LPD:

o XAI: Explain and validate NN (first order linear approximation)

o Extension: risk-management

e Story: Chaotic markets — weak dependence — downsize
exposure

o LPD faster than classic MA-filters (relative anticipation)

@ Fraud detection: see paper

Marc Wildi: ZHAW, marc.wildi@zhaw.ch Branka Hadji Misheva:


https://www.explainableaiforfinance.com/repository-of-papers

	Forecasting with NN
	Black-Box: Why we Need Explainability
	Classic XAI Approaches
	Regression and Explainability
	NN and Explainability: LPD
	LPD Applied to Bitcoin
	Application to S&P500
	Summary 

