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• There are about 8 million artists on Spotify. 

• But most artist don’t get a lot of attention. 

• Only 2% (165’000) have at least 10’000 monthly listeners

and more than 10 songs.

Source: Loud&Clear (2022) 

https://loudandclear.byspotify.com/

https://loudandclear.byspotify.com/


Similarly, only a fraction of patents is 
technologically important

From a sample of patents filed in 

2015, only 4% have received more

than 10 citations.



This presentation is about how to separate 

important patents from unimportant ones? 

Source: Flickr, Tony Hammond ©

https://www.flickr.com/photos/8525214@N06/6124451226

https://www.flickr.com/photos/8525214@N06/6124451226
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Why Bother Predicting the Importance of 
Patents?

• Patents are booming: 188’000 new patent applications submitted to 

the European Patent Office (EPO) in 2021.

• Patents are an early indicator for inventive activity (of firms, 

regions or even countries) and approximate future productivity (see, 

e.g., Kogan 2017; Hall 2007, 2005).

• But patents’ importance can only be observed retrospectively -

with a time lag of up to 5 years! 

• Too late for business analytics that are obviously interested in much 

shorter time spans.

➢ Can we predict, which patents will 

become important in near-realtime? 



The Project

Project funded by Innosuisse:

• Partners: ZHAW and Econsight.

• Proof-of-Concept.

• Implemented for 2 different technology fields («renewable energy», 

«mobility & storage»).



Patents and Patent Data



Patents and Patent Data

• Patent data contain a lot of information that can be exploited.

• Patent data is rather messy and subject to many caveats.

➢ Requires a good understanding of the patent corpus and how to handle it. 

• For some issues there exist best practices in the literature, but a lot remains up 

to the scientist.

➢ Many degrees of freedom.



How to Measure the Importance of Patents?

• Patents cite other patents.

• Number of received citations is 

positively related to 

technological innovation and the 

economic value of a patent (see 

Kogan et al. 2017 or Hall et al. 

2005, for example)



How To Predict the Importance of Patents?

• Patents are cited only over time.

➢ Assessment of technological significance is not possible for new patents. 

Variety of Information 

as Features

Patent Metadata

• No. of involved inventors / 

companies

• No. of claims

• No. of cited patents / non-patent 

literature

• …

Patent Text

• Abstract

• Claims

• Fulltext / Description

Supervised Machine

Learning

Relationship between Input

und Output

Number of Citations

as Target



Data Engineering

• The same invention is often codified in different patents (patent families).

• If patent families are not considered correctly, data leakage! 

• Features

• Meta-data and text from the most cited patent of a family.

• Standardization by priority year and technological field.

• Standard NLP cleaning. 

• Target

• Family-to-family citations.

• Citation quantiles of publication year and technological field.



Training a Classifier: Data Overview

Grouped into 3 

classes based on 

normalized number of

forward citations:

Top 20%

Middle 40%

Bottom 40%

Cleaned and 

tokenized text

Cleaned and 

tokenized text

Target

Patent 

Abstract 

Patent 

Claims

Features

Normalized number of

claims, assignees, etc.

Patent 

Metadata

Forward 

Citations



Training a Classifier: Architecture

Patent Abstract

LSTM / 

Transformer

Ensemble

Fully Connected

Feedforward NN

Patent Claims

Patent Metadata

Bag-of words

Fully Connected

Feedforward NN

Bag-of-words

Fully Connected

Feedforward NN



Training a Classifier: Performance

Technology 

Field

Number of

Samples

Weighted F1 Score

(All Patent Groups)

F1 Score

(Top Patents)

Renewable

Energy

4415 51.9% 59.5%

Mobility and 

Storage

4021 52.8% 61.1%



Takeaways

What we have learned

• Decent knowledge of patent data is crucial

• Many degrees of freedom

• Proof-of-concept successful (Performance in line with SOTA e.g., Chung 

& Sohn 2020; Lee, Kwon, Kim & Kwon 2018)

• Scalable framework to other technologies



Takeaways

What questions remain

• Is a classifier trained on patents from 2010-2016 reliable to predict new 

patents in 2022?

• How to best handle the trade-off between narrowly defined technology 

fields vs. the smaller number of corresponding samples?

• How to more efficiently leverage patent text for classification 

(preprocessing, embeddings, language models)?
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