Tutorial Example - Railroad Crossing

- Gates on north and south side.
- Trains arrive from west or east side.
- Railroad Crossing Control System detects incoming train and secures the crossing for the train to pass.
- Once the train has passed, cars and people are allowed to cross again (safely).
Tutorial Example - Railroad Crossing

• The designers perspective?
 – Railroad crossing system seen as a SysML model.
Group Activity - STPA Step 1

- Assume the scope has been set.
 - System boundary + System Level Accidents/Hazards
- The next step is to build a HCS for our system that will support the identification of Unsafe Control Actions.
- We will try to do this as a group activity:
 - We will distribute you a bunch of HCS variations.
 - Discuss the differences and construct your own HCS (see next slide) that you will use for a Step 1 analysis.
 - Go through a few CA and document any UCA on the template tables.
 - Time for the activity: approx. 35 minutes.
 - We will collect the results and make them available later.
Group Activity - STPA Step 1

• Proceed as follows for building a HCS:
 – Identify all potential controllers involved in this system
 • Includes their “interface”, i.e. control output and feedback input.
 – Identify what type of element they act on
 • On another controller, directly on a process?
 – Put controllers and processes into a control hierarchy by following the control path.
 – Identify the feedbacks going back to the controllers.
 – Take assumptions and extend the design model where necessary.

 – You can use the flipcharts to capture your HCS(es).
A few Comments

- It is imperative to document the functional behavior of the controllers in a complete and accurate way.
 - The HCS drawing is not sufficient to perform an analysis.
 - Accurately defining a controllers task and role helps to identify misunderstandings!
- Starting to search for UCA close to the controlled process tends to simplify the effort.
 - Whether a \{CA, keyword, context\} leads to a hazard is easier to see “close” to the process.
 - Analyzing the impact of \{CA, keyword\} and determining a relevant context at the upper hierarchy echelons is not always straightforward.
- STPA is “robust”
 - If you do not put an entity on the HCS it will show up in the Control-Loops. It is hard to miss something.
Real World Example - Feedwater Level Control of Nuclear Power Plant

1 Reactor
2 Steam generator
3 Reactor coolant pump
4 Pressuriser
5 High-pressure turbine
6 Water separator
7 Superheater
8 Low-pressure turbine
9 Condenser
10 Condensate pump
11 Low-pressure preheater
12 Feedwater tank
13 Feedwater pump
14 High-pressure preheater
Now... where do you want to start?

Rejzek M. *Use of STPA in digital instrumentation and control systems of nuclear power plants. 2nd European STAMP Workshop; 2014, Germany*
Identification of Functional Entities
Recombination into HCS
After elimination of Non-Controllers

With this view, the way to go is much clearer!

Rejzek M. *Use of STPA in digital instrumentation and control systems of nuclear power plants*. 2nd European STAMP Workshop; 2014, Germany