STPA FOR LINAC4 AVAILABILITY REQUIREMENTS

A. Apollonio, R. Schmidt 4th European STAMP Workshop, Zurich, 2016

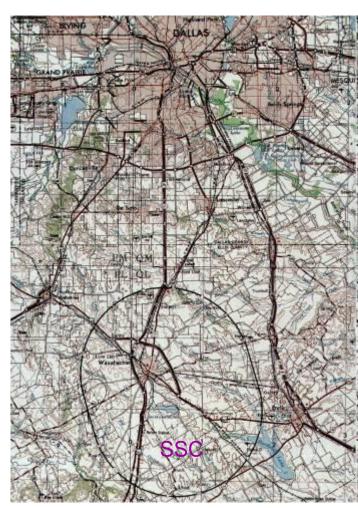
- CERN provides the world's largest and **most complex scientific instruments** to study the constituents of matter
- These instruments are **particle accelerators** and **experiments**
- Accelerators boost beams of elementary particles to high energies before they are made to collide with each other
- Experiments observe and record the results of these collisions

Our flag-ship project is the Large Hadron Collider...

• LHC relies on the reliable operation of the injectors, e.g. LINAC4

All work at CERN can be openly published without limitations – interesting aspect for collaborations with University Groups

CERN: Particle Injector Chain



LINAC4 provides beam for LHC and several other experiments

- Not to complete the construction of the accelerator
 - Happened to other projects, the most expensive was the Superconducting Super Collider in Texas / USA with a length of ~80 km
 - Cost increase from 4.4 Billion US\$ to 12 Billion US\$, US congress stopped the project in 1993 after having invested more the 2 Billion US\$
- Not to be able to operate the accelerator
- **Damage** to the accelerator **beyond repair** due to an accident

NO LHC: Future of Particle Physics compromised

LHC: Hazards and Machine Protection

□ Safety-critical:

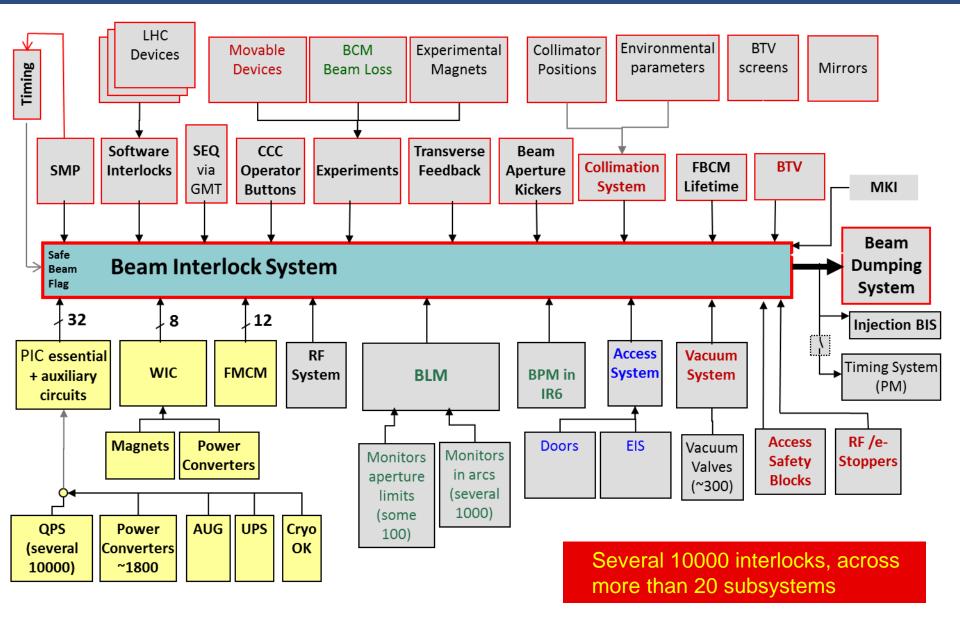
- □ 362 MJ stored beam energy
- □ 9 GJ energy stored in the magnet powering system

□ Complex: □ Severa Mix of proced LHC is the protection is mission Need for a Kinetic Energy of 200 m Train at 155 km/h requireme

□ STPA was not used to develop the LHC MPS15 years ago

Addressing beam induced damage

Effect of 0.1% of the LHC beam energy on copper target (Experiment at SPS)

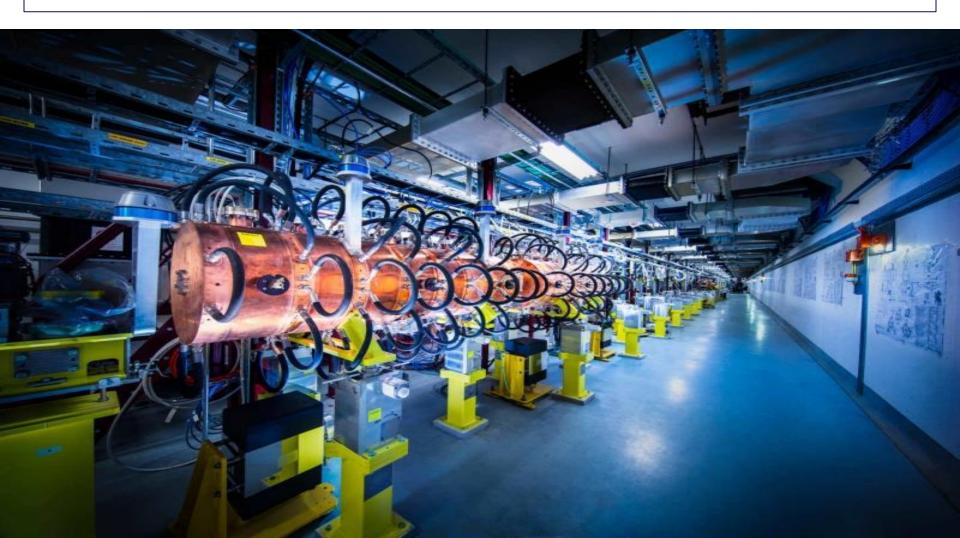

LHC: Real Accident without beam

Arcing in the interconnection in 2008 at LHC

LHC MPS to prevent beam accidents

Design principles for protection systems

• Efficient accelerator operation


Priority 1: Avoid accidents (reducing availability and introducing repair cost)Priority 2: Operate with high availability

- Failsafe design
 - detect internal faults
 - if the protection system does not work, better stop operation rather than damage equipment (<u>affecting availability</u>)
- Excellent diagnostics
 - recording all failures
- Flexibility: managing interlocks
 - disabling of interlocks is common practice (keep track!)
 - LHC: masking of some interlocks possible for low intensity / low energy beams

- New injector for the CERN accelerator complex
- Being commissioned, regular operation starting in next years

Motivation for the use of STPA

- Increasing accelerator complexity requires a systematic approach for identification of machine protection requirements
 - Address and optimize **contradictory requirements** (safety vs availability)
 - Applicable from early design stages (not applied to a given design)
 - Results should not regard only the system architecture, but also provide recommendations for correct operation and management of the accelerator

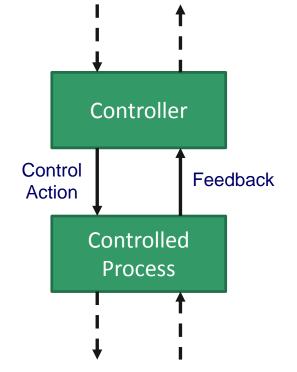
□ Long-term goal

 Identify suitable method for the design of machine protection systems for the **next generation** of particle accelerators

□ As a start...

Apply method for the first time to a small accelerator to verify its suitability → LINAC4

STPA steps

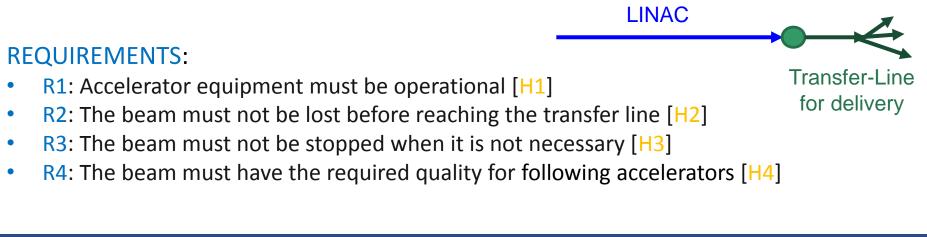

□ Step 1: Identify accidents and hazards

□ Step 2: Draw the **control structure**

- Controller + controlled process
- Control actions + feedback

□ Step 3: Identify Unsafe Control Actions

- □ Step 4: Identify Causal Factors
- (Step 5: Iterate 1 to 4 until suitable mitigation is found)



ACCIDENTS:

- <u>A1</u>: Lack of beam for other accelerators
- A2: Damage to accelerator equipment
- A3: Injuries to staff members
- A4: Release of radioactive material in the environment

HAZARDS (only related to A1):

- H1: Accelerator equipment is not ready for operation [A1, A2]
- H2: Beam is lost before reaching the transfer line [A1, A2]
- H3: Beam is stopped before reaching the transfer line when it is not necessary [A1]
- H4: Beam doesn't have the required quality for following accelerators [A1]

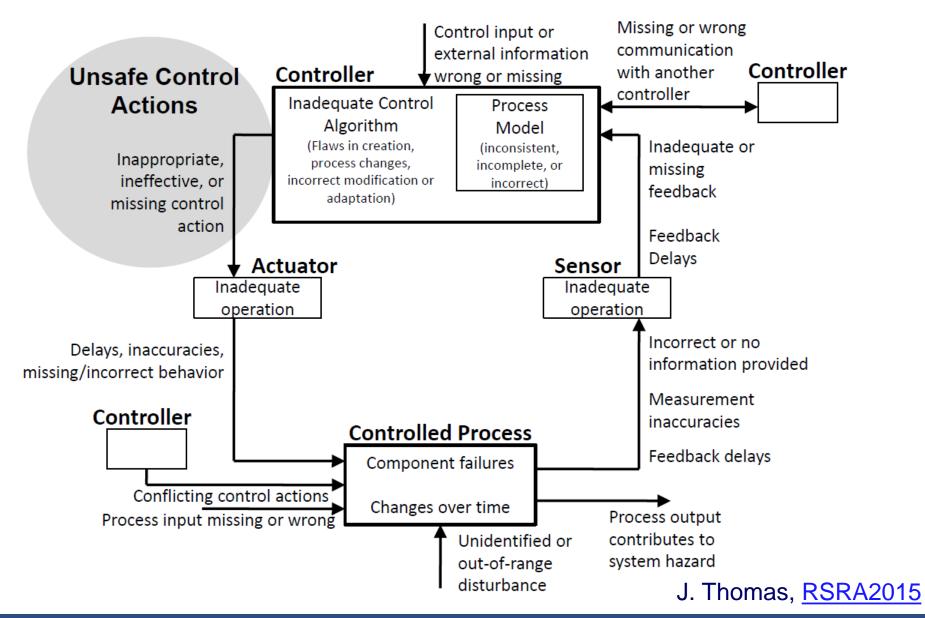
Step 2: LINAC4 Control Structure

Step 3: "Unsafe" (unwanted) Control Actions

Control Action	Not providing causes hazard	Providing causes hazard	Too early/too late, wrong order	Stopped too soon/applied too long
Beam stop	UCA2, UCA4, UCA5, UCA2	<u>UCA1</u>	UCA3	-

UCA1: The beam is stopped when it is not necessary (automatically or by an operator)

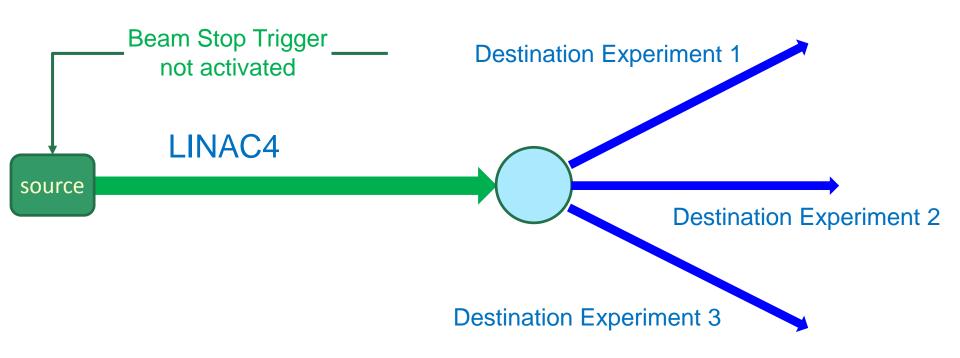
UCA2: The beam is not stopped in a detected emergency situation (automatically or by an operator) due to the unavailability of an actuator


UCA3: The beam is not stopped while personnel has access to the linac

UCA4: The beam is not stopped following the missed detection of an undesirable accelerator configuration

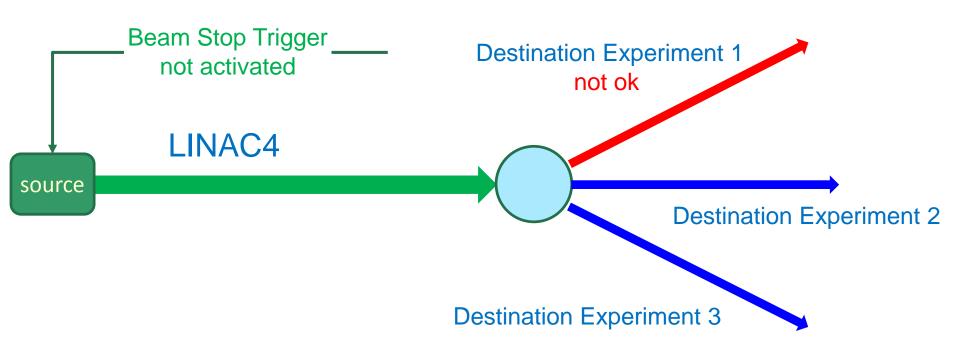
UCA5: The beam is not stopped when the beam quality is not sufficient for following accelerators

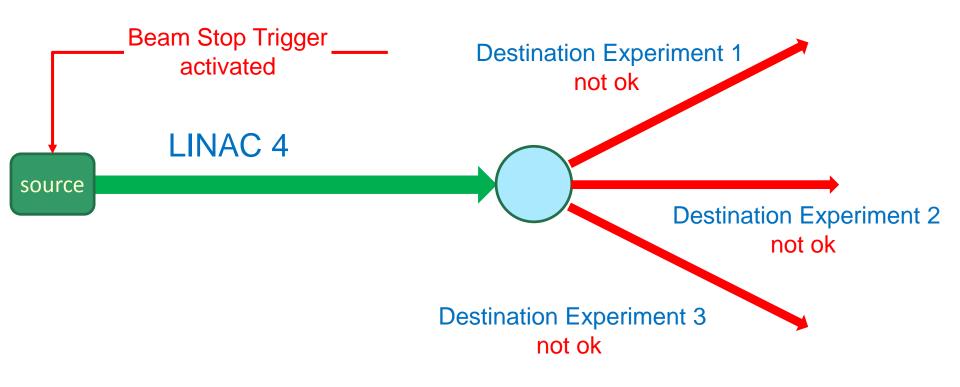
Identify Causal Factors



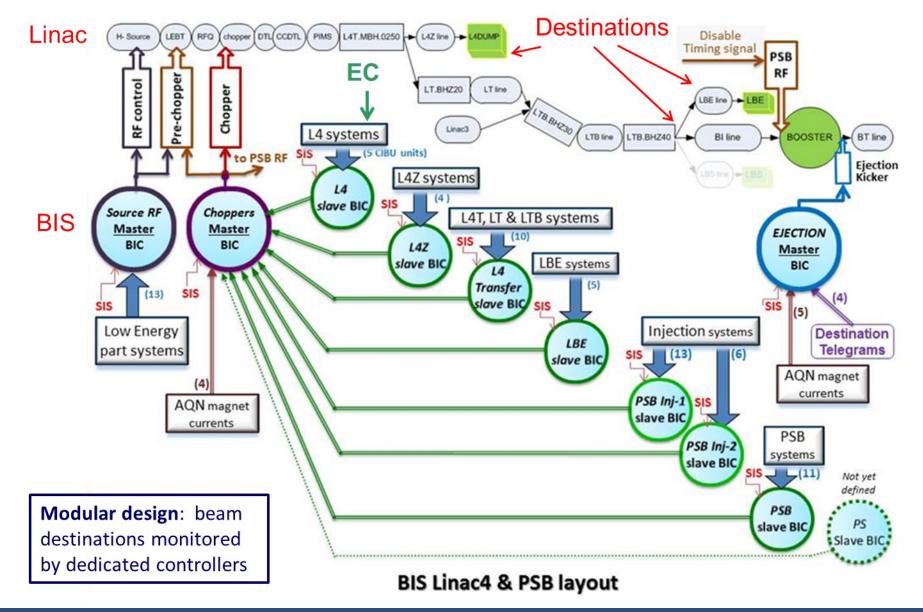
Scenario

Ctep 4: Causal Factors


Control input or	external						1	
			b is executed when it is not necessary					
information wrong or		: tors v act	Notes		Requirements			
missing: Operator triggers		e	The emergency button in the control room is accidentally				• 'Practical'	
					Prote	ct the physical device	measure	es
an unnecessary beam stop			Accession of Coursel Fosters			dental contact	-	
		Associated Causal Factors						
	On a ratar misinta					rators to uso	• Марадо	rial
Operator misinte feedback from						rators to use and processes	Managerial	
	instrumentation	Opera	perator accidentally act		ts or	h the control room.	and	
		the p	hysical devid	e conne	ecte		organiza	tional
	00		•			rators to use	measure	
	Operator execute	to the	o the controller					.5
	command that triggers a		beam or hardware			Notes		
	dangerous situat	ion and	this leads to a dang	7				ral
			that requires a bear					es
	Technical person			The em	nerg	ency button in	n the	
			Technical personne				- II. <i>i</i>	
		ng a beam	eam that the machine is control r		i roc	om is accidenta	апу	
Sensor - Inadequate or	stop.		A sensor gives wror	nusher	1			J
missing feedback: The			information and de	termines	A ded	Requi	rements	
sensor feedback is wrong			that a beam stopi s		can as	•		
and automatically triggers	Sensor is faulty a	nd causes	even if no direct ma	achine harm	senso			
a beam stop.	a beam stop.		exists.		occur			
			A sensor signals a h		Consi			
Spurious trigger of a			operating condition due to a		When	Protect the physical device		
	sensor causing a	beam	spurious failure (e.g	g. radiation-				
	stop.		induced).		radiat	from accident	tal contact	t


Beam can be send to all destinations

Beam can be send to destination 2 and 3



Beam stopped at the source

LINAC4 Machine Protection

Availability-oriented design of the Machine Protection System

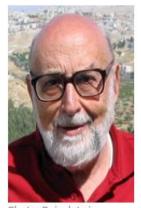
- Modular design of MPS → Tree-like Architecture
- Management of beam destinations → External conditions
- Flexibility of MPS → Software Interlock System

□ Procedural/managerial measures

- Definition of a MPS responsible for approval of changes/settings of the MPS
- Document for MPS requirements during LINAC4 commissioning

Experience from LINAC4

- STPA: suitable tool for hazard analysis of safety-critical systems in accelerators
 - Allows dealing with increasing system complexity
 - Results go beyond requirements for hardware design
- Successful application to LINAC4 MPS
 - Set of availability requirements
 - Impact on LINAC4 MPS architecture design
- Needs to be complemented by other tools (e.g. fault trees etc.)
 - In particular for sub-systems / components
 - Numbers can still be very useful...


..... and from LHC

- LHC Machine Protection Global Design has been done in a somewhat similar way as STPA (starting with topdown approach), without using the formalism, complemented by traditional methods for subsystems
- General approach to Machine Protection
 - Protect the Equipment
 - Protect the Beam
 - Provide the Evidence
- Independently from the method: spread Safety Culture for particle accelerators (at CERN helped by the 2008 accident)

LHC produce excellent results

The Nobel Prize in Physics 2013

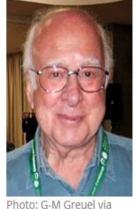


Photo: Pnicolet via Wikimedia Commons François Englert

Wikimedia Commons Peter W. Higgs

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs *"for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"*

References:

- J. Thomas, "The Reliability and System Risk Analysis (RSRA) Workshop", CERN, 2015 (<u>link</u>)
- N. Leveson, "An STPA primer" (<u>link</u>)
- A. Apollonio, "Machine Protection: Availability for Particle Accelerators" (<u>link</u>)
- A-STPA, University of Stuttgart (<u>link</u>)