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Motivation

• More than 80% of the energy consumed in Swiss households is
used for room heating & cooling and domestic hot water.*

• The increasing combined use of various energy conversion and
storage technologies (PT, solar thermal collectors, heat pumps, 
combustion, batteries, hot water storage, ice storage systems) 
requires intelligent and optimal control systems.

• Reinforcement Learning (RL) showed promising performance in 
different fields (AlphaZero, computer games).

• RL is a data-driven approach.
• Can RL be used as control method for HVAC**-Systems?

(optimality, learning behavior, robustness,…
* Energieverbrauch in der Schweiz und weltweit, EnergieSchweiz, Bundesamt für Energie BFE
Dienst Aus-und Weiterbildung, Juli 2015
** HVAC: heating, ventilation, air conditioning
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Model of Building and Heating System
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Reinforcement Learning Control

Schematic from: Richard S. Sutton and Andrew G. Barto, An introduction to reinforcement learning, 2018
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Q-Learning and SARSA

These interacting, interdependent, interative jobs must be done:
1. learn q for actions performed in state visited
2. approximate a generalized q-function on state and action space

(SxA) (typically with gradient descent)
3. improve control performance by e.g. (ε-)greedy policy

→ potentially unstable

( )1max (( , ,) ( , ) ( )) ,t t t ttt ta tRq s a q s a s aq a q sγα + −+← +

( )1 1( , ) ( , ) ( , )( , )t t t t t tt t tq s a q s a q s aR q s aγα + + −+← +

Q-learning:

SARSA:

difference of «large» numbers!

learning rate

new estimate of return G



Zürcher Fachhochschule

Improvement of Stability

• Ad 1: More efficient learning of q through n-step SARSA

instead of .

Average fraction return:

• Ad 2: Least-Squares fit to {st,at,Gt,n} with polynomials and trigonometric
functions to find q(s,a) on SxA instead of iterative gradient descent
methods.
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State, Action, Reward

• State variables for RLC (continous and discrete)
– 6 temperatures, ℝ6 (Tamb, Tair, Tfloor, Tstorage1, Tstorage2, Tforecast)
– time, real interval [0,24[
– room occupancy, boolean

• Action variables (discrete, 12 combinations)
– heat pump off/loading storage 1 or 2,∈ {0,1,2} 
– PID floor heating on/off, boolean
– PID convection heater on/off, boolean

• Reward (≤0):
– energy costs (negative, night and day rate)
– temperature deviation from setpoint, (negative, proportional to ∆T, only if

house is occupied)
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Approximation of State-Action Value 
Function q(s,a)

• Partitioning of state-action space in continous (c) and discrete (d) subspaces:

S x A = (Sc x Sd) x (Ac x Ad) = Sc x Ac x Sd x Ad

• For each set of discrete variables in Sd x Ad (24 configurations) q(s,a) is
approximated in the continous subspace Sc x Ac by a linear combination of
polynomials (temperatures) and trigonometric functions (time):

rewritten as flattened vector product

typically: j = 252  → k⋅j = 6’048 coefficients ckj
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Analytical Solution
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Decision Making, Reward Normalization

• probability of choosing ai :

• normalization of reward per year (plots only!) by difference of average
outside temperature and room set point temperature
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Hardware & Software

• 2 Servers with 2 CPUs Intel Xeon Platinum 8164 each

• Each CPU with 26 cores

• 768 GB RAM 

• Code written in Mathematica

• Computation time for 1 year simulation: 1min
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SARSA vs Q-Learning
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Effect of n in n-step SARSA
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Effect of n in n-step SARSA

n=1 out of plot range
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Influence of Discount Factor γ

Actual time 5:00. One more heating hour before 20:00 is needed. What hour seems to be
the best choice?  (If γ>0.952: heating at 5:00, otherwise heating at 19:00)

→ especially too low γ‘s lead to suboptimal decisions and unrealistic q-values



Zürcher Fachhochschule

n-step SARSA without Discount

• The discount of future rewards disturbs the optimal scheduling of
actions with fixed and known costs.

• Alternative approach: n-step SARSA without discount

• The time horizon is defined by n instead of γ!
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n-step SARSA without Discount
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Performance of n-step SARSA without
Discount
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Parallel «Supporting» Agents, Motivation

Could larger scatter be exploited by helping worse agents become better and
then by chance even be better than best agent?
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Parallel «Supporting» Agents, Structure

Agent 1 (phyper,1, εsupp,1)

Agent 2 (phyper,2, εsupp,2)

Agent 3 (phyper,3 εsupp,3)

Agent n (phyper,n εsupp,n) control & performance
parameter

occupation & 
weather data
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Parallel «Supporting» Agents, Results

→ all agents show better performance than best agent without support
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Parallel «Supporting» Agents, Results
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RL Control Example (1)
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RL Control Example (2)
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RL Control Example (3)

-0.1 *(energy rate)

agent heats at 
cheaper night rate 
only
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Simulated Reinforcement Learning

Schematic: Peter Bolt, ACSS IMAP ZHAW
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RBC with Parameters Optimized by RL

• Some simple fixed rules
• Setpoints for water storage heating 1 & 2 are parametrized,

k1 and k2 learned

• Reward (energy consumption & set point violation) is normalized
and thus almost independent of outside temperature:
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RL with Parametrized RBC

→ acceptable performance in less than 1 year!
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Summary

• RLC for a heating system
– converges to nearly optimal trajectories
– needs order of 100 simulated years for convergence (→ simulated RL)

• Improvements to RL
– least-squares fit to get q(s,a) in one step
– n-step SARSA
– truncated reward sum without discount
– parallel, mutually supporting agents

• Alternative approach with parametrized RBC
– much shorter learning time due to less coefficients
– good performance
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