

Data-Driven Financial Risk Modeling at Scale with Apache Spark

Prof. Dr. Kurt Stockinger (joint work with Nils Bundi, Wolfgang Breymann and Jons Heitz) Zurich University of Applied Sciences

> Artificial Intelligence in Industry and Finance Winterthur, September 6, 2018

Zürcher Hochschule für Angewandte Wissenschafter

DatFRisMo: Data-Driven Financial Risk Modeling

School of Engineering InIT Institut für angewandte

An ACTUS Portfolio

Zürcher Hochschule für Angewandte Wissenschaften

How Can we Solve this Challenge?

• Big Data Problem:

- Large amounts of contract events (generated cash flows)
- Big Computation Problem:
 - Large-scale Monte-Carlo simulation (risk factors)

Main Research Questions

- Question 1: Can we easily **parallelize** existing financial kernels?
- Question 2: Can financial calculations be formulated in SQL and thus be accelerated by taking advantage of a SQL Query Optimizer?
- Question 3: What is the scalability of running large-scale, real-world financial analytics?

Zürcher Hochschule für Angewandte Wissenschaften

Data Flows in Actus

Financial Analytics

• Nominal value:

- Measures the (current) notional outstanding of, e.g., a loan
- Provides basis for exposure calculations in credit- risk departments
- Fair value:
 - Quantifies the price of a contract that could be realized in a market transaction at current market conditions
- Liquidity:
 - Expected net liquidity flows over some future time periods

Basic measurements necessary for analyzing and managing different types of financial risks

Financial Analytics – More Formal

• Nominal value: is $N_i^k = n_i^k(t_0)$ $n_i^k(t_0)$ current notional outstanding

• Fair value:
$$V_i^k = \sum_{t \in T_i^k} d_i^k(t) f_i^k(t)$$
 $d_i^k(t)$ cash flow $f_i^k(t)$ discount factor

• Liquidity: $L_i^k = (l_i^k(\delta_1), l_i^k(\delta_2), \ldots)$ with $l_i^k(\delta_u) = \sum_{t \in (t_0 + \delta_{u-1}, t_0 + \delta_u)} f_i^k(t)$ $\Delta = \{\delta_1, \delta_2, \ldots, \delta_u, \ldots\}$ time periods

Different Types of Parallelism

• Task parallelism:

- Task is split into subtasks
- Each subtask is executed on different node of computer cluster

• Data parallelism:

- Data is distributed onto nodes of computer cluster
- Each node executes some task on different part of data

Financial analytics is an **embarrassingly parallel** problem that can be solved with **data parallelism**

Zürcher Hochschule für Angewandte Wissenschafter

Engineering

School of

Use Apache Spark Big Data Technology

- General purpose cluster computing system
- Originally developed at UC Berkeley, now one of the largest Apache projects
- Typically faster than Hadoop due to main-memory processing
- High-level APIs in Java, Scala, Python and R
- Functionality for:
 - Map/Reduce
 - SQL processing
 - Real-time stream processing
 - Machine learning
 - Graph processing

User Defined Functions vs. SQL in Spark

- User defined function:
 - Function provided by user (can be any piece of code)
- SQL:
 - SQL statement provided by user
- Spark can execute both UDFs and SQL in parallel
- However, UDFs are more of a black box while SQL queries can be accelerated by SQL Optimizer (similar to parallel relational databases)
- Trade-off between leveraging existing code or re-writing in SQL

Major Data Structure

s1

Zürcher Hochschule für Angewandte Wissenschaften School of Engineering InIT Institut für angewandte Informationstechnologie

Need a data structure that enables data parallelism based on Spark **DataSet**

Each line can be executed in parallel

On-the-Fly: Spark-UDF for Non-Linear and Linear Analytics

Zircher Hochschule für Angewandte Wissenschaften School of Engineering InIT Institut für angewandte Informationstechnologie

The whole code is executed as a user defined function in Spark

risk factor scenarios

On-the-Fly: Spark-UDF for Non-Linear and Spark-SQL for Linear Analytics

Zürcher Hochschule für Angewandte Wissenschaften

School of Engineering InIT Institut für angewandte Informationstechnologie

Linear analytics are rewritten and executed in SQL

risk factor scenarios

Materialized: Spark-UDF or SQL for Linear Analytics

Zürcher Hochschule für Angewandte Wissenschaften

Cash flow results are materialized

risk factor scenarios

Zürcher Hochschule für Angewandte Wissenschafter

Experimental Environment

• Software:

- ACTUS implemented in Java
- Apache Spark 2.3 running on Amazon Web Services
- 96 million financial contracts
- 1,000 risk factor model

• Hardware:

- Up to 32 machines with 30 GB RAM, 16 vCPUs at 2.5 GHz each
- Total:
 - 960 GB of distributed RAM
 - 512 vCPU cores

Generate and Count Cash Flows

Zürcher Hochschule für Angewandte Wissenschaften

Close to linear scalability

Zürcher Hochschule für Angewandte Wissenschaften

UDF and SQL Analytics – On-the-Fly

School of Engineering nIT Institut für angewandte Informationstechnologie

UDF analytics outperform SQL analytics

Liquidity Analysis

The more time periods, the longer the execution times

Generating and Materializing Cash Flows

Zürcher Hochschule für Angewandte Wissenschaften

Overhead due to non-parallelized meta data management

20

UDF and SQL Analytics – Materialized Architecture

Zürcher Hochschule für Angewandte Wissenschafter

SQL analytics outperform UDF analytics

Spark memory problems due to large memory footprint

Liquidity Analyses

SQL analytics outperform UDF up to 16 liquidity periods

Conclusions and Lessons Learned

- Experiment setup on up to 512 vCPU cores on Amazon Web Services
- Most of the experiments show close to linear scalability
- Lesson 1 Use UDFs for On-the Fly Calculations:
 - Use UDFs rather than rewrite financial kernel
- Lesson 2 Use SQL for iterative calculations on materialized results
 - When results are materialized, SQL optimizer can improve run time
- Lesson 3 Performance tuning of Spark on real- world problems remains challenging
 - Dynamic memory management for large jobs not ideal
 - Need manual tuning
- Contact: Kurt Stockinger