
Data-Driven Financial Risk Modeling
at Scale with Apache Spark

Prof. Dr. Kurt Stockinger
(joint work with Nils Bundi, Wolfgang Breymann and Jons Heitz)

Zurich University of Applied Sciences

Artificial Intelligence in Industry and Finance
Winterthur, September 6, 2018

DatFRisMo: Data-Driven Financial Risk Modeling

2

Brammertz, Akkizidis, Breymann,
Entin, Rustmann, Unified Financial
Analysis. Wiley, Chichester, 2009.

An ACTUS Portfolio

Aggregation over contracts
(mostly linear operations)

3

How Can we Solve this Challenge?

• Big Data Problem:
• Large amounts of contract events (generated cash flows)

• Big Computation Problem:
• Large-scale Monte-Carlo simulation (risk factors)

4

Main Research Questions

• Question 1: Can we easily parallelize existing financial kernels?

• Question 2: Can financial calculations be formulated in SQL and thus
be accelerated by taking advantage of a SQL Query Optimizer?

• Question 3: What is the scalability of running large-scale, real-world
financial analytics?

5

Data Flows in Actus

6

Financial Analytics

• Nominal value:
• Measures the (current) notional outstanding of, e.g., a loan
• Provides basis for exposure calculations in credit- risk departments

• Fair value:
• Quantifies the price of a contract that could be realized in a market

transaction at current market conditions
• Liquidity:

• Expected net liquidity flows over some future time periods

Basic measurements necessary for analyzing and managing different
types of financial risks

7

Financial Analytics – More Formal

• Nominal value: is current notional outstanding

• Fair value: cash flow
discount factor

• Liquidity:

• time periods

8

Different Types of Parallelism

• Task parallelism:
• Task is split into subtasks
• Each subtask is executed on different node

of computer cluster

• Data parallelism:
• Data is distributed onto nodes of

computer cluster
• Each node executes some task on different part of data

Financial analytics is an embarrassingly parallel problem that can
be solved with data parallelism

9

Use Apache Spark Big Data Technology

• General purpose cluster computing system
• Originally developed at UC Berkeley, now one of the largest Apache

projects
• Typically faster than Hadoop due to main-memory processing
• High-level APIs in Java, Scala, Python and R
• Functionality for:

• Map/Reduce
• SQL processing
• Real-time stream processing
• Machine learning
• Graph processing

User Defined Functions vs. SQL
in Spark

• User defined function:
• Function provided by user (can be any piece of code)

• SQL:
• SQL statement provided by user

• Spark can execute both UDFs and SQL in parallel
• However, UDFs are more of a black box while SQL queries can be

accelerated by SQL Optimizer (similar to parallel relational
databases)

• Trade-off between leveraging existing code or re-writing in SQL

11

Major Data Structure

12

Need a data structure that enables data parallelism based on Spark DataSet

Each line can be executed in parallel

On-the-Fly: Spark-UDF for Non-Linear
and Linear Analytics

13

The whole code is executed as a user defined function in Spark

On-the-Fly: Spark-UDF for Non-Linear and
Spark-SQL for Linear Analytics

14

Linear analytics are rewritten and executed in SQL

Materialized: Spark-UDF or SQL for
Linear Analytics

15

Cash flow results are materialized

Experimental Environment

• Software:
• ACTUS implemented in Java
• Apache Spark 2.3 running on Amazon Web Services
• 96 million financial contracts
• 1,000 risk factor model

• Hardware:
• Up to 32 machines with 30 GB RAM, 16 vCPUs at 2.5 GHz each
• Total:

• 960 GB of distributed RAM
• 512 vCPU cores

16

Generate and Count Cash Flows

17

Close to linear scalability

UDF and SQL Analytics – On-the-Fly

18

Spark memory problems
due to large memory footprint
(data needs to be read several times)

UDF analytics outperform SQL analytics

Liquidity Analysis

19

The more time periods, the longer the execution times

Generating and Materializing
Cash Flows

20

Overhead due to non-parallelized meta data management

UDF and SQL Analytics –
Materialized Architecture

21

Spark memory problems due to large memory footprint
SQL analytics outperform UDF analytics

Liquidity Analyses

22

SQL analytics outperform UDF up to 16 liquidity periods

Conclusions and Lessons Learned

• Experiment setup on up to 512 vCPU cores on Amazon Web Services
• Most of the experiments show close to linear scalability

• Lesson 1 - Use UDFs for On-the Fly Calculations:
• Use UDFs rather than rewrite financial kernel

• Lesson 2 - Use SQL for iterative calculations on materialized
results
• When results are materialized, SQL optimizer can improve run time

• Lesson 3 - Performance tuning of Spark on real- world problems
remains challenging
• Dynamic memory management for large jobs not ideal
• Need manual tuning

• Contact: Kurt Stockinger
23

	Data-Driven Financial Risk Modeling �at Scale with Apache Spark
	DatFRisMo: Data-Driven Financial Risk Modeling
	An ACTUS Portfolio
	How Can we Solve this Challenge?
	Main Research Questions
	Data Flows in Actus
	Financial Analytics
	Financial Analytics – More Formal
	Different Types of Parallelism
	Use Apache Spark Big Data Technology
	User Defined Functions vs. SQL �in Spark
	Major Data Structure
	On-the-Fly: Spark-UDF for Non-Linear and Linear Analytics �
	On-the-Fly: Spark-UDF for Non-Linear and Spark-SQL for Linear Analytics �
	Materialized: Spark-UDF or SQL for Linear Analytics �
	Experimental Environment
	Generate and Count Cash Flows
	UDF and SQL Analytics – On-the-Fly
	Liquidity Analysis
	Generating and Materializing �Cash Flows
	UDF and SQL Analytics – �Materialized Architecture
	Liquidity Analyses
	Conclusions and Lessons Learned

