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DatFRisMo: Data-Driven Financial Risk Modeling
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Brammertz, Akkizidis, Breymann, 
Entin, Rustmann, Unified Financial 
Analysis. Wiley, Chichester, 2009.



An ACTUS Portfolio

Aggregation over contracts
(mostly linear operations)
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How Can we Solve this Challenge?

• Big Data Problem:
• Large amounts of contract events (generated cash flows)

• Big Computation Problem:
• Large-scale Monte-Carlo simulation (risk factors)
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Main Research Questions

• Question 1: Can we easily parallelize existing financial kernels? 

• Question 2: Can financial calculations be formulated in SQL and thus 
be accelerated by taking advantage of a SQL Query Optimizer? 

• Question 3: What is the scalability of running large-scale, real-world 
financial analytics? 
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Data Flows in Actus
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Financial Analytics

• Nominal value:
• Measures the (current) notional outstanding of, e.g., a loan 
• Provides basis for exposure calculations in credit- risk departments 

• Fair value:
• Quantifies the price of a contract that could be realized in a market 

transaction at current market conditions 
• Liquidity:

• Expected net liquidity flows over some future time periods 

Basic measurements necessary for analyzing and managing different 
types of financial risks 
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Financial Analytics – More Formal

• Nominal value: is                                                         current notional outstanding

• Fair value:                                                                cash flow
discount factor                                  

• Liquidity: 

• time periods
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Different Types of Parallelism

• Task parallelism:
• Task is split into subtasks
• Each subtask is executed on different node 

of computer cluster

• Data parallelism:
• Data is distributed onto nodes of 

computer cluster
• Each node executes some task on different part of data

Financial analytics is an embarrassingly parallel problem that can 
be solved with data parallelism 
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Use Apache Spark Big Data Technology

• General purpose cluster computing system
• Originally developed at UC Berkeley, now one of the largest Apache 

projects
• Typically faster than Hadoop due to main-memory processing
• High-level APIs in Java, Scala, Python and R
• Functionality for:

• Map/Reduce
• SQL processing
• Real-time stream processing
• Machine learning 
• Graph processing



User Defined Functions vs. SQL 
in Spark

• User defined function:
• Function provided by user (can be any piece of code)

• SQL:
• SQL statement provided by user

• Spark can execute both UDFs and SQL in parallel 
• However, UDFs are more of a black box while SQL queries can be 

accelerated by SQL Optimizer (similar to parallel relational 
databases)

• Trade-off between leveraging existing code or re-writing in SQL
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Major Data Structure
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Need a data structure that enables data parallelism based on Spark DataSet

Each line can be executed in parallel



On-the-Fly: Spark-UDF for Non-Linear 
and Linear Analytics 
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The whole code is executed as a user defined function in Spark



On-the-Fly: Spark-UDF for Non-Linear and 
Spark-SQL for Linear Analytics 
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Linear analytics are rewritten and executed in SQL



Materialized: Spark-UDF or SQL for 
Linear Analytics 
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Cash flow results are materialized



Experimental Environment

• Software:
• ACTUS implemented in Java
• Apache Spark 2.3 running on Amazon Web Services
• 96 million financial contracts
• 1,000 risk factor model

• Hardware:
• Up to 32 machines with 30 GB RAM, 16 vCPUs at 2.5 GHz each
• Total: 

• 960 GB of distributed RAM
• 512 vCPU cores
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Generate and Count Cash Flows
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Close to linear scalability



UDF and SQL Analytics – On-the-Fly
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Spark memory problems
due to large memory footprint
(data needs to be read several times) 

UDF analytics outperform SQL analytics 



Liquidity Analysis
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The more time periods, the longer the execution times



Generating and Materializing 
Cash Flows
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Overhead due to non-parallelized meta data management 



UDF and SQL Analytics –
Materialized Architecture
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Spark memory problems due to large memory footprint
SQL analytics outperform UDF analytics 



Liquidity Analyses
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SQL analytics outperform UDF up to 16 liquidity periods



Conclusions and Lessons Learned

• Experiment setup on up to 512 vCPU cores on Amazon Web Services
• Most of the experiments show close to linear scalability

• Lesson 1 - Use UDFs for On-the Fly Calculations: 
• Use UDFs rather than rewrite financial kernel

• Lesson 2 - Use SQL for iterative calculations on materialized 
results 
• When results are materialized, SQL optimizer can improve run time

• Lesson 3 - Performance tuning of Spark on real- world problems 
remains challenging 
• Dynamic memory management for large jobs not ideal
• Need manual tuning

• Contact: Kurt Stockinger
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