Correlation scenarios and correlation stress testing

Natalie Packham

joint work with Fabian Woebbeking

6th European COST Conference on Al Industry and Finance 9 September 2021

- Correlation lies at the heart of many financial applications: portfolio risk-management, diversification, hedging.
- Principal idea: link economically meaningful scenarios to correlation scenarios
- First paper "London Whale":

Packham, N. and Woebbeking, F.: A factor-model approach for correlation scenarios and correlation stress-testing. Journal of Banking and Finance, 101 (2019), 92-103.

Current working paper:

Packham, N. and Woebbeking, F.: Correlation scenarios and correlation stress testing . $\hfill \end{tabular}$

- Objectives:
 - Correlation factor model for any kind of financial asset portfolio
 - Bayesian factor selection to incorporate a priori knowledge
 - Stress testing: portfolio effect of adverse correlation scenarios
 - Reverse stress testing: identify extreme yet plausible scenarios

Motivation

The "London Whale"

- "London Whale": 2012 Loss at JPMorgan Chase & Co. of approx.
 6.2 bn USD on a credit derivatives portfolio
- Authorised trading position, hence risk management problem
- Synthetic credit portfolio (SCP): 120 long and short positions, CDX and iTraxx index + tranche products, investment grade and high-yield
- "Smart short" strategy: credit protection on high yield is financed by selling protection on investment grade indices.
- Timeline:
 - End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
 - Avoid liquidation costs by increasing positions with opposite market sensitivity (hedges).
 - 23 March 2012: Senior executives ordered to stop trading on SCP; net notional of 157 bn USD (up 260% from September 2011).
- Risk management of SCP focussed on value-at-risk (VaR) and CSW-10 (credit spread widening of 10 basis points).

Publicly available information: JPMorgan, 2013; United-States-Senate, 2013a,b Motivation

The "London Whale"

- "London Whale": 2012 Loss at JPMorgan Chase & Co. of approx.
 6.2 bn USD on a credit derivatives portfolio
- Authorised trading position, hence risk management problem
- Synthetic credit portfolio (SCP): 120 long and short positions, CDX and iTraxx index + tranche products, investment grade and high-yield
- "Smart short" strategy: credit protection on high yield is financed by selling protection on investment grade indices. (

 correlation risk)

 Timeline:
 - End of 2011: decision to reduce SCP's risk-weighted assets (RWA's).
 - Avoid liquidation costs by increasing positions with opposite market sensitivity (hedges). (

 correlation risk)
 - 23 March 2012: Senior executives ordered to stop trading on SCP; net notional of 157 bn USD (up 260% from September 2011).
- Risk management of SCP focussed on value-at-risk (VaR) and CSW-10 (credit spread widening of 10 basis points).

Publicly available information: JPMorgan, 2013; United-States-Senate, 2013a,b Motivation

Motivation

Methodology Correlation parameterisation Factor selection Stress testing

Application (equity portfolio)

Interest-rate modelling: Correlation parameterisation

Parametric correlation models widespread in

interest-rate modelling / LIBOR market model,

e.g. Rebonato (2002); Brigo (2002); Schoenmakers and Coffey (2000); Packham (2005)

Simplest case: Correlation c_{ij} between two forward LIBOR's is given by

 $c_{ij} = e^{-\beta|i-j|},$

where $\beta > 0$ is a parameter, and i, j represent maturities.

Captures stylised fact that correlations decay with increasing maturity difference

Link correlations to risk factors

- Idea: Carry over "distance" measure to other risk factors, such as geographic regions, industries, investment grade vs. high-yield, ...
- Association of asset $i \in \{1, \ldots, p\}$ with factor $k \in \{1, \ldots, d\}$:

 $\mathbf{1}_{\{k,i\}}$

[Assume this as given for the time being.]

Correlation parameterisation:

$$c_{ij} = \tanh\Big(\underbrace{\sum_{k=1}^{d} \lambda_k |\mathbf{1}_{\{k,i\}} - \mathbf{1}_{\{k,j\}}|}_{\text{"inter"-correlations}} + \underbrace{\sum_{k=1}^{d} \nu_k \mathbf{1}_{\{k,i\}} \mathbf{1}_{\{k,j\}}}_{\text{"intra"-correlations}}\Big),$$

with coefficients $\lambda_1, \ldots, \lambda_d, \nu_1, \ldots, \nu_d \in \mathbb{R}$.

Methodology

Link correlations to risk factors

- $tanh : \mathbb{R} \to [-1, 1]$ allows for negative correlations.
- tanh used in inferential statistics on sample correlation coefficients (~> Fisher transformation).
- The following summation formula is helpful for a rough interpretation of the coefficients:

$$\tanh(x+y) = \frac{\tanh x + \tanh y}{1 + \tanh x \tanh y}$$

Methodology

Correlation parameterisation

- Given a sample correlation matrix at one time point, the coefficients λ₁,...,λ_d, ν₁,...,ν_d can be determined e.g. by ordinary least squares on arctanh(c_{ij}), the inverse of tanh.
- Simple correlation scenarios such as "the correlation between assets exposed to factor k and assets not exposed to factor k increases" is then implemented by increasing λ_k (e.g. Europe vs US).
- Likewise, a scenario such as "the correlation of firms exposed to factor k increases" is implemented by increasing ν_k (e.g. within Europe).
- With parameters calibrated on a regular basis, the parameter history can be used to **obtain realistic scenarios** (reverse stress test).

Motivation

Methodology Correlation parameterisation Factor selection Stress testing

Application (equity portfolio)

Principal ideas

- Risk factors in "London Whale" were tailored to specific portfolio.
- In practice, factor models use industries and countries as factors to model asset correlations.
- Problem: How to assign factors to assets?
- Number of factors should be small, but include all important factors.
- > Prior information: country of firm's headquarter, primary industry
- Agesian variable selection to determine small number of factors
 driving asset return

Bayesian variable selection

- Different methods, e.g.
 - Bayesian model selection compares posterior probabilities of different models.
 - Spike and slab priors include an indicator variable for each coefficient and determines the indicator variable's posterior probability of taking value one.
- In our setting, **Bayesian model selection** worked best.

Bayesian model selection

- Denote candidate models by M_i , $i = 1, \ldots, m$.
- ▶ In a linear regression setting, each model *M_i* includes a specific subset of independent variables (= potential risk factors) and excludes the other variables.
- Posterior model probability:

 $p(M_i|\boldsymbol{y}) \propto p(\boldsymbol{y}|M_i)p(M_i),$

where

- y is the time series of a firm's asset returns,
- $p(M_i)$ is the prior model probability,
- $p(\boldsymbol{y}|M_i)$ is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir *et al.*, 2013)) Methodology

Bayesian model comparison

Posterior inclusion probabilities (PIP):

$$\mathbf{P}(\mathbf{1}_{\{\beta_k \neq 0\}} = 1 | \boldsymbol{y}) = \sum_{\beta_k \in M_i} \mathbf{P}(M_i | \boldsymbol{y}).$$

- If number of parameters p is large, then full calculation of 2^p posterior model probabilities is infeasible.
- \blacktriangleright \Rightarrow Use Markov Chain Monte Carlo (MCMC) simulation.
- ▶ Factors with PIP greater 0.5 are selected

Methodology

Motivation

${\sf Methodology}$

Correlation parameterisation Factor selection

Stress testing

Application (equity portfolio)

Stress-testing correlations

- **Stress-test**: Effect on portfolio due to an adverse scenario.
- A shift in correlation has no *instantaneous* effect on portfolio value, therefore consider **portfolio risk**.
- Portfolio risk measured by value-at-risk (VaR) in variance-covariance approach:

$$\mathsf{VaR}_{\alpha} = -V_0 \cdot \mathrm{N}_{1-\alpha} \cdot \left(\mathbf{w}^{\intercal} \, \boldsymbol{\Sigma} \, \mathbf{w}\right)^{1/2},$$

with

- current position value V_0 ,
- $N_{1-\alpha}$: $(1-\alpha)$ -quantile of the standard normal distribution,
- vector of portfolio weights ${\bf w}$ and
- covariance matrix Σ .
- For correlation stress test, only need to consider portfolio variance

$$\mathbf{w}^{\intercal} \, \mathbf{\Sigma} \, \mathbf{w}$$

Methodology

Revere stress testing

- What is the worst scenario amongst all scenarios that occur within some pre-given range?
- Restrict **risk-factor distribution** $(\lambda_1, \ldots, \lambda_d, \nu_1, \ldots, \nu_d)$
- Univariate setting: quantile
- Multivariate setting:
 - Mahalanobis distance (Mahalanobis, 1936),
 - highest density regions (HDR) (Hyndman, 1996a),
 - concepts based on norms, e.g.(Serfling, 2002).
- Maha is closely tied to the normal or to elliptical distributions.
- HDR allows for more flexibility (e.g. skewness and tail heaviness).

Methodology

Highest density region (HDR)

- Let f(x) be the density function of a random vector X
- ► The 100(1 q)% HDR is the subset of R(fq) of the sample space of X such that

 $R(f_q) = \{x : f(x) \ge f_q\}$

where f_q is the largest constant such that $\mathbf{P}(X \in R(f_q)) \ge 1 - q$.

(Hyndman, 1996b)

• Worst-case scenario within given HDR:

$$\boldsymbol{\beta}^* = \operatorname*{argmax}_{\{\boldsymbol{\beta} \in R(f_q)\}} \mathsf{VaR}_{\alpha}(\boldsymbol{\beta}).$$

Motivation

Methodology

Application (equity portfolio) Factor selection and fit

Stress test

Factor selection

- Factors: MSCI stock indices representing 6 geographic regions and 11 industries
- Individual stocks: 505 S&P constituents, 30 DAX constituents
- Daily data from 1999-Jan 2021 (Source: Bloomberg, MSCI, Reuters)
- Factor assignment re-calibrated every quarter, based on 3-years of daily data (88 quarters)
- Prior: hard-code primary geographic region and industry,
- ▶ 6 factors on expectation

Factor selection

- Number of quarters that each factor is included for SAP
- German IT company

Factor selection

- Number of quarters that each factor is included for Amazon:
- US based online retailer with strong presence in Europe
- World's largest provider of computing services (AWS)

AMZN.O

Application (equity portfolio)

Correlations at beginning of Covid-19 pandemic

Empirical & fitted correlations; top: 18 Feb, bottom: 18 Mar 2020.
 Application (equity portfolio)

Factor coefficients

Fitted parameters for risk factors with high loads.

Factor coefficients

Fitted "intra" parameters for selected risk factors ("ν_k")

Application (equity portfolio)

Motivation

Methodology

Application (equity portfolio) Factor selection and fit Stress test

Risk-factor distribution

- Fit time series of risk factor parameters (λ₁,...,λ_d,ν₁,...,ν_d) to Normal-Inverse Gaussian (NIG) distribution
- NIG: generalisation of normal dist. that allows for skewness and higher variation in tails
- Calibration via using expectation-maximization (EM) algorithm, (McNeil *et al.*, 2005, Chapter 3) and Dempster *et al.* (1977)

Value-at-risk impact

► Blue: VaR_{99%,1 day} on equally-weighted portfolio of DAX and S&P 500

 Orange: Stressed VaR_{99%,1 day} on reverse stress scenario of 5 April 2021.

Application (equity portfolio)

Reverse stress testing (Covid-19 pandemic)

- ▶ Worst-case scenario within 95% HDR (18 Feb 2020)
- Triangles: worst-case scenarios (MC sim., Hist. sim.)
- Stars: Scenarios on 18 Feb (green) and 18 March (blue)
 Application (equity portfolio)

- We develop a correlation stress testing framework, linking risk factors with correlations.
- Risk factors (e.g. industries, countries) are linked firms via Bayesian variable selection methods.
- Reverse stress tests are conducted by assigning the factor loadings a distribution and determining the worst-case scenario within a HDR.

References I

Brigo, D. A note on correlation and rank reduction. Working Paper, May 2002.

- Dempster, A. P., N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society: Series B* (*Methodological*), 39(1):1–22, 1977.
- Fahrmeir, L., T. Kneib, S. Lang, and B. Marx. Regression. Springer, 2013.
- Hyndman, R. J. Computing and graphing highest density regions. *The American Statistician*, 50(2):120–126, 1996.
- Hyndman, R. J. Computing and graphing highest density regions. *The American Statistician*, 50(2):120–126, 1996.
- JPMorgan. Report of JPMorgan Chase & Co. Management Task Force Regarding 2012 CIO Losses, 2013.
- Mahalanobis, P. C. On the generalized distance in statistics. National Institute of Science of India, 1936.
- McNeil, A., R. Frey, and P. Embrechts. *Quantitative Risk Management*. Princeton University Press, Princeton, NJ, 2005.

References II

- Packham, N. Correlation parameterization and calibration for the LIBOR market model. Master Thesis, Frankfurt School of Finance & Management, March 2005.
- Rebonato, R. Modern Pricing of Interest-Rate Derivatives: The LIBOR Market Model and Beyond. Princeton University Press, 2002.
- Schoenmakers, J. and B. Coffey. Stable implied calibration of a multi-factor libor model via a semi-parametric correlation structure. Weierstrass Institute for Applied Analysis and Stochastics, Preprints, No. 611, 2000.
- Serfling, R. Quantile functions for multivariate analysis: approaches and applications. Statistica Neerlandica, 56(2):214–232, 2002.
- United-States-Senate. JPMorgan Chase Whale Trades: A case history of derivatives risks and abuses. exhibits, 2013.
- United-States-Senate. JPMorgan Chase Whale Trades: A case history of derivatives risks and abuses. report, 2013.

Thank you!

Prof. Dr. Natalie Packham Professor of Mathematics and Statistics Berlin School of Economics and Law Badensche Str. 52 10825 Berlin natalie.packham@hwr-berlin.de

Hochschule für Wirtschaft und Recht Berlin Berlin School of Economics and Law

