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Overview

I Correlation lies at the heart of many financial applications: portfolio

risk-management, diversification, hedging.

I Principal idea: link economically meaningful scenarios to

correlation scenarios

I First paper “London Whale”:
Packham, N. and Woebbeking, F.: A factor-model approach for cor-

relation scenarios and correlation stress-testing. Journal of Banking

and Finance, 101 (2019), 92-103. link
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https://www.sciencedirect.com/science/article/pii/S0378426619300202 


Overview

I Current working paper:
Packham, N. and Woebbeking, F.: Correlation scenarios and correla-

tion stress testing . link

I Objectives:

– Correlation factor model for any kind of financial asset portfolio

– Bayesian factor selection to incorporate a priori knowledge

– Stress testing: portfolio effect of adverse correlation scenarios

– Reverse stress testing: identify extreme yet plausible scenarios
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https://arxiv.org/abs/2107.06839


The “London Whale”

I “London Whale”: 2012 Loss at JPMorgan Chase & Co. of approx.

6.2 bn USD on a credit derivatives portfolio

I Authorised trading position, hence risk management problem

I Synthetic credit portfolio (SCP): 120 long and short positions, CDX

and iTraxx index + tranche products, investment grade and high-yield

I “Smart short” strategy: credit protection on high yield is financed by

selling protection on investment grade indices.

(← correlation risk)

I Timeline:

– End of 2011: decision to reduce SCP’s risk-weighted assets (RWA’s).

– Avoid liquidation costs by increasing positions with opposite market

sensitivity (hedges).

(← correlation risk)

– 23 March 2012: Senior executives ordered to stop trading on SCP;

net notional of 157 bn USD (up 260% from September 2011).

I Risk management of SCP focussed on value-at-risk (VaR) and

CSW-10 (credit spread widening of 10 basis points).

I Publicly available information: JPMorgan, 2013; United-States-Senate, 2013a,b
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Interest-rate modelling: Correlation parameterisation

I Parametric correlation models widespread in

interest-rate modelling / LIBOR market model,

e.g. Rebonato (2002); Brigo (2002); Schoenmakers and Coffey (2000);

Packham (2005)

I Simplest case: Correlation cij between two forward LIBOR’s is given by

cij = e−β|i−j|,

where β > 0 is a parameter, and i, j represent maturities.

I Captures stylised fact that correlations decay with increasing

maturity difference
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Link correlations to risk factors

I Idea: Carry over “distance” measure to other risk factors, such as

geographic regions, industries, investment grade vs. high-yield, ...

I Association of asset i ∈ {1, . . . , p} with factor k ∈ {1, . . . , d}:

1{k,i}

[Assume this as given for the time being.]

I Correlation parameterisation:

cij = tanh
( d∑
k=1

λk|1{k,i} − 1{k,j}|︸ ︷︷ ︸
”inter”-correlations

+

d∑
k=1

νk1{k,i}1{k,j}︸ ︷︷ ︸
”intra”-correlations

)
,

with coefficients λ1, . . . , λd, ν1, . . . , νd ∈ R.
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Link correlations to risk factors

I tanh : R→ [−1, 1] allows for negative correlations.

I tanh used in inferential statistics on sample correlation coefficients

( Fisher transformation).

I The following summation formula is

helpful for a rough interpretation of the

coefficients:

tanh(x+ y) =
tanhx+ tanh y

1 + tanhx tanh y
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Correlation parameterisation

I Given a sample correlation matrix at one time point, the coefficients

λ1, . . . , λd, ν1, . . . , νd can be determined e.g. by ordinary least

squares on arctanh(cij), the inverse of tanh.

I Simple correlation scenarios such as “the correlation between assets

exposed to factor k and assets not exposed to factor k increases” is

then implemented by increasing λk (e.g. Europe vs US).

I Likewise, a scenario such as “the correlation of firms exposed to factor

k increases” is implemented by increasing νk (e.g. within Europe).

I With parameters calibrated on a regular basis, the parameter history

can be used to obtain realistic scenarios (reverse stress test).
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Principal ideas

I Risk factors in “London Whale” were tailored to specific portfolio.

I In practice, factor models use industries and countries as factors to

model asset correlations.

I Problem: How to assign factors to assets? link

I Number of factors should be small, but include all important factors.

I Prior information: country of firm’s headquarter, primary industry

I  Bayesian variable selection to determine small number of factors

driving asset return
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Bayesian variable selection

I Different methods, e.g.

– Bayesian model selection compares posterior probabilities of

different models.

– Spike and slab priors include an indicator variable for each

coefficient and determines the indicator variable’s posterior

probability of taking value one.

I In our setting, Bayesian model selection worked best.
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Bayesian model selection

I Denote candidate models by Mi, i = 1, . . . ,m.

I In a linear regression setting, each model Mi includes a specific subset

of independent variables (= potential risk factors) and excludes the

other variables.

I Posterior model probability:

p(Mi|y) ∝ p(y|Mi)p(Mi),

where

– y is the time series of a firm’s asset returns,

– p(Mi) is the prior model probability,

– p(y|Mi) is called the marginal likelihood.

(see e.g. Appendix B.5.4 of (Fahrmeir et al., 2013))
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Bayesian model comparison

I Posterior inclusion probabilities (PIP):

P(1{βk 6=0} = 1|y) =
∑

βk∈Mi

P(Mi|y).

I If number of parameters p is large, then full calculation of 2p posterior

model probabilities is infeasible.

I ⇒ Use Markov Chain Monte Carlo (MCMC) simulation.

I Factors with PIP greater 0.5 are selected

Methodology 14
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Stress-testing correlations

I Stress-test: Effect on portfolio due to an adverse scenario.

I A shift in correlation has no instantaneous effect on portfolio value,

therefore consider portfolio risk.

I Portfolio risk measured by value-at-risk (VaR) in variance-covariance

approach:

VaRα = −V0 ·N1−α · (wᵀ Σ w)
1/2

,

with

– current position value V0,

– N1−α: (1− α)-quantile of the standard normal distribution,

– vector of portfolio weights w and

– covariance matrix Σ.

I For correlation stress test, only need to consider portfolio variance

wᵀ Σ w.
Methodology 16



Revere stress testing

I What is the worst scenario amongst all scenarios that occur within

some pre-given range?

I Restrict risk-factor distribution (λ1, . . . , λd, ν1, . . . , νd)

I Univariate setting: quantile

I Multivariate setting:

– Mahalanobis distance (Mahalanobis, 1936),

– highest density regions (HDR) (Hyndman, 1996a),

– concepts based on norms, e.g.(Serfling, 2002).

I Maha is closely tied to the normal or to elliptical distributions.

I HDR allows for more flexibility (e.g. skewness and tail heaviness).
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Highest density region (HDR)

I Let f(x) be the density function of a random vector X

I The 100(1− q)% HDR is the subset

of R(fq) of the sample space of X

such that

R(fq) = {x : f(x) ≥ fq}

where fq is the largest constant such

that P(X ∈ R(fq)) ≥ 1− q. (Hyndman, 1996b)

I Worst-case scenario within given HDR:

β∗ = argmax
{β∈R(fq)}

VaRα(β).
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Factor selection

I Factors: MSCI stock indices representing 6 geographic regions and 11

industries

I Individual stocks: 505 S&P constituents, 30 DAX constituents

I Daily data from 1999-Jan 2021 (Source: Bloomberg, MSCI, Reuters)

I Factor assignment re-calibrated every quarter, based on 3-years of daily

data (88 quarters)

I Prior: hard-code primary geographic region and industry,

I 6 factors on expectation

Application (equity portfolio) 20



Factor selection

I Number of quarters that each factor is included for SAP

I German IT company
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Factor selection

I Number of quarters that each factor is included for Amazon:

I US based online retailer with strong presence in Europe

I World’s largest provider of computing services (AWS)
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Correlations at beginning of Covid-19 pandemic

I Empirical & fitted correlations; top: 18 Feb, bottom: 18 Mar 2020.
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Factor coefficients

2005 2010 2015 2020
timestamp

0.0

0.1

0.2

0.3

0.4

0.5

Selected parameter time series (grey vertical lines indictate variable selection intervals)
MM-Americas
intra_Financials
intra_MM-Americas

I Fitted parameters for risk factors with high loads.
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Factor coefficients

2005 2010 2015 2020
timestamp

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Selected parameter time series (grey vertical lines indictate variable selection intervals)
intra_EM-Americas
intra_EM-Asia
intra_EM-EMEA
intra_MM-Americas
intra_MM-Europe
intra_MM-Pacific

I Fitted “intra” parameters for selected risk factors (“νk”)
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Risk-factor distribution

I Fit time series of risk factor parameters (λ1, . . . , λd, ν1, . . . , νd) to

Normal-Inverse Gaussian (NIG) distribution

I NIG: generalisation of normal dist. that allows for skewness and higher

variation in tails

I Calibration via using expectation-maximization (EM) algorithm,

(McNeil et al., 2005, Chapter 3) and Dempster et al. (1977)
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Value-at-risk impact
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I Blue: VaR99%,1 day on equally-weighted portfolio of DAX and S&P 500

I Orange: Stressed VaR99%,1 day on reverse stress scenario of 5 April

2021.
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Reverse stress testing (Covid-19 pandemic)
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I Worst-case scenario within 95% HDR (18 Feb 2020)

I Triangles: worst-case scenarios (MC sim., Hist. sim.)

I Stars: Scenarios on 18 Feb (green) and 18 March (blue)
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Conclusion

I We develop a correlation stress testing framework, linking risk factors

with correlations.

I Risk factors (e.g. industries, countries) are linked firms via Bayesian

variable selection methods.

I Reverse stress tests are conducted by assigning the factor loadings a

distribution and determining the worst-case scenario within a HDR.
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