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Typical applications

• Movies (Netflix)

• Songs (Spotify)

• Books (Goodreads)

• E-commerce products (Amazon)

"People who bought this also liked…"

"If you bought this, you might also like…"

Typical Applications of Recommender Systems

Challenges in the area of Financial Advice

• No explicit feedback

• Product nature might change over time

• A recommendation has a financial impact on the client

Typical methods

• Collaborative filtering (CF)

• Content-based filtering (CB)
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Business Case
Recommender Systems for Financial Advice

Typically: 

high net worth clients receive tailored investment advice

less affluent clients get standardized offerings
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Client Relationship Manager: 

• manages between 50 and 200 clients

• manually processes information to provide customized advice 

Business Case
Recommender Systems for Financial Advice

Financial markets
Economies
Companies

Political events
…

Client life events
Client goals

Client preferences
Client portfolios

…
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Client Relationship Manager: 

• focuses on his own clients

• has little knowledge of other relationship managers’ clients

Business Case
Recommender Systems for Financial Advice
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Recommender System leverages crowd intelligence: 

• finds similar clients across entire customer base

• cross-recommends products that are the most likely to be accepted

• supports relationship managers: improved quality of advice and saved time

Business Case
Recommender Systems for Financial Advice
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Recommender System: 

• includes the less affluent client segments

• delivers recommendations to clients directly: access to personalized advice

Business Case
Recommender Systems for Financial Advice
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Need for Explanations
Recommender Systems for Financial Advice

Why the need for explanations?

GDPR: right to explanations

Clients: explanations → more trust

CRMs: arguments to convince clients

How to get explanations?

Recommenders are built on similarities

Why are these clients similar?

Some systems have a ready answer, some don’t

"People who bought this also liked…"

"If you bought this, you might also like…"

Why?

Why?
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Nature of the Use Case and Data Description
Retail Banking Use Case

Data from Nidwaldner Kantonalbank

✓ provided by the Nidwaldner Kantonalbank (NKB) and 

anonymised for the purpose of this presentation

✓ ~100 products

✓ ~3 products per client (on average)

✓ Product categories:

• Current accounts

• Savings accounts

• Credit card accounts

• Investment accounts

• Mortgages and loans

• etc.

Relatively few offered products (tens to hundreds; current or savings accounts, credit cards, etc.)

Clients typically own few products

Clients rarely change products 

Goal: personalized recommendations of retail banking products, such as accounts and credit cards
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Data Overview: Top 20 Most Popular Products
Retail Banking Use Case

p
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d
u

ct

% of clients holding the product

A few very popular products

A few products popular across the client base, 

the rest only held by smaller groups of clients 
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Why Model Based CF Fails & Our Model Choice
Retail Banking Use Case

RESULTS

Model-based CF Popular Model

Accuracy 8.96 ± 0.18% 20.43 ± 0.23%

Mean Reciprocal Rank 17.72 ± 0.18% 31.53 ± 0.22%

“Popular” (non-personalised) model performs better than model-based CF

• clients consume too few products (3 on average)

• low variety of the most popular products

Memory-based demographic collaborative filtering 

+ cold-start solved through user features

+ easily interpretable: explanations for recommendations

- requires collection of features

- need to store full matrix 

→ useful for retail banking use case (limited history)
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Memory Based Collaborative Filtering
Retail Banking Use Case

Step 1: Demographic segmentation

For each client, find a neighbourhood of k similar clients (k-NN) 

based on the Gower distance and features:

• gender

• age group

• wealth group

• e-banking usage

• 3rd pillar payments

• ...

Step 2: Product popularity

Within each client’s neighbourhood:

• determine the popularity of each product - how many clients in 

the neighbourhood consumed it

• identify explanatory features and values - values of features 

most common in the neighbourhood (e.g. age 18-24)

Step 3: Personalized recommendation

For each client:

• sort the products the client has not yet consumed by popularity

• recommend the top 5 products

• bonus: explanations via shared features in a neighbourhood
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Results
Retail Banking Use Case

RESULTS

Model-Based CF Popular Model Memory-Based Demographic CF

Accuracy 8.96 ± 0.18% 20.43 ± 0.23% 45.11 ± 1.27%

Mean Reciprocal Rank 17.72 ± 0.18% 31.53 ± 0.22% 58.44 ± 1.01%

Memory based demographic CF wins against popular model and model-based CF

Explanations are naturally provided by the algorithm



17

Qlik Sense User Interface
Retail Banking Use Case
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Retirement Savings and Youth Savings accounts
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Retirement Savings and Youth Savings accounts

Recommend a savings account up to 20 years
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Retirement Savings and Youth Savings accounts

Recommend a savings account up to 20 years

Explanation: popular product in a youth neighborhood between 18 and 24 with single civil status



21

Qlik Sense User Interface
Retail Banking Use Case
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Private and Savings accounts
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Private and Savings accounts

Recommend a current account for companies
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Qlik Sense User Interface
Retail Banking Use Case

Customer already owns Private and Savings accounts

Recommend a current account for companies

Explanation: popular product in neighborhood with no age or gender info, and of type “companies”
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Subset of data from Nidwaldner Kantonalbank

✓ provided by the Nidwaldner Kantonalbank (NKB) and 

anonymised for the purpose of this presentation

✓ 1117 users, 1788 items

✓ ~18 products per person (on average)

Many offered products (thousands; financial instruments such as stocks, bonds, derivative instruments, etc)

Clients typically own many products

Clients buy and sell investments - substantial history of user-product “ratings”

Goal: personalized recommendations of financial instruments, such as stocks and bonds

Nature of the Use Case and Data Description
Private Banking Use Case
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Model-based collaborative filtering (CF)

+ no user or item features required

+ typically more accurate than other models

- difficult to interpret

→useful for private

banking use case

(abundant history)
Challenges

missing data points

→ client didn’t want the product? OR doesn’t know about it?

implicit ratings 

→ how to determine if the clients liked the products they bought?

explanations must be worked out separately

→ matrix-based CF is a black box, it doesn’t give explanations along the way

Modeling approach

1. Ratings matrix factorization to discover latent features

2. Confidence weights – fix confidence weights in one model

3. Boosting – confidence weights estimated from the ensemble model

Model Based Collaborative Filtering
Private Banking Use Case
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RESULTS 

Model-based CF Popular Model

AUC 0.9077 ± 0.0003 0.8728

nDCG 0.5737± 0.0057 0.4287

aRHR 0.4597± 0.0072 0.2719

Model based CF wins against the popular model

But explanations remain a missing piece

Results
Private Banking Use Case
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0 1 0 1 1 0 0

1 0 1 0 0 1 1

0 1 0 1 1 0

0 0 0 1 1 1 0

1 0 1 0 1 1 0

1 0 0 1 0 1 0

0 1 0 1 1 0 0

Σ 2 3 2

Explanations for Model Based CF: Best Attempt
Private Banking Use Case

The product that appears together with the recommended one for similar users most 

often is the explanatory product
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Explaining matrix factorization CF

+ gives useful and reasonable explanations

- requires additional computational step

- tries to imitate algorithm logic

What would be better

A CF matrix-factorisation algorithm that provides explanations on the way

• can also work with missing ratings

• is as accurate as Model Based CF

Explanations for Model Based CF: Best Attempt
Private Banking Use Case
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OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

Reinhard Heckel, Michail Vlachos, Thomas Parnell, Celestine Duenner, 

“Scalable and interpretable product recommendations via overlapping co-clustering”, 2017

Originally applied on:

• IBM products

• Scientific articles

• Movielens

• Netflix

We applied it on the NKB private banking data

OCuLaR: Co-Clustering Recommendation Algorithm
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

Goal: produce recommendation for client 4

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

Observation: blocks in the matrix (co-clusters) combine similar users and items

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

Recommendation: uncovering co-cluster membership, we can recommend other items 

from these co-clusters

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

Recommendation: Item 4 is recommended to Client 4 because:
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

Recommendation: Item 4 is recommended to Client 4 because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 0 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

Recommendation: Item 4 is recommended to Client 4 because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4

Client 4 has purchased Items 5-6: clients with similar purchase history (clients 5-6) also bought Item 4
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0 1 1 1 0 0 0

0 1 1 1 0 0 0

1 1 1 1 0 0 0

0 1 1 1 1 0

0 0 0 1 1 1 1

0 0 0 1 1 1 0

0 1 0 0 0 1 1

OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

Recommendation: Item 4 is recommended to Client 4 because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4

Client 4 has purchased Items 5-6: clients with similar purchase history (clients 5-6) also bought Item 4
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OCuLaR: Probabilistic Explainable Recommender
Private Banking Use Case

OCuLaR State-of-art Matrix Factorization

Si
m

ila
ri

ti
es

Can work with missing or implicit ratings

Decompose the ratings matrix into compact representation

Use the notion of latent features, applicable both to users and items

D
if

fe
re

n
ce

s

Predicts probability of a purchase Predicts ratings

𝑃 𝑟𝑢𝑖 = 1 = 1 − exp(− 𝑓𝑢, 𝑓𝑖 ) 𝑟𝑢𝑖 = 𝑓𝑢 , 𝑓𝑖

Latent factors are confined 
to model co-clusters

Provides no interpretation 
of latent features

Explanatory products are 
revealed automatically

Provides no explanation
for recommendations
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Private Banking Use Case
Results

RESULTS 

OCuLaR Model-based CF Popular Model

AUC 0.9305± 0.0022 0.9077 ± 0.0003 0.8728

nDCG 0.5709± 0.0039 0.5737± 0.0057 0.4287

aRHR 0.4932± 0.0039 0.4597± 0.0072 0.2719

OCuLaR and Model based CF both win against the popular model

OCuLaR provides explanations automatically
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Summary and Outlook
Recommender Systems for Mass Customization of Financial Advice

Private Banking: personalized recommendations of financial instruments

Many products, abundant history of ratings per user

Model-based Collaborative Filtering

• probabilistic co-clustership model provides explanations on the way

Retail Banking: personalized recommendations of accounts, credit cards, mortgages, etc.

Few products per user, limited history of ratings

• explanations come as a part of algorithm through user features

Memory-based Demographic Collaborative Filtering

Ongoing projects

Working with two large Swiss banks on an advisory recommender system in private banking

• A/B testing

• Portfolio context

• Features changing in time

• Hybrid models



BRANDSCHENKESTRASSE 41

CH-8002 ZURICH

SWITZERLAND

INFO@INCUBEGROUP.COM

INCUBEGROUP.COM

Thank you!

Anna Nowakowska

anna.nowakowska@incubegroup.com


