

Recommender Systems for Mass Customization of Financial Advice

Artificial Intelligence in Industry and Finance

3rd European COST Conference on Mathematics for Industry in Switzerland Winterthur, 06.09.2018

Anna Nowakowska

Head of Data Analytics anna.nowakowska@incubegroup.com

Talk Outline

- (1) Recommender Systems for Financial Advice
- 2 Retail Banking Use Case
- 3 Private Banking Use Case
- 4 Summary and Outlook for the Future

- 1 Recommender Systems for Financial Advice
- 2 Retail Banking Use Case
- 3 Private Banking Use Case
- 4 Summary and Outlook for the Future

Typical Applications of Recommender Systems

"People who bought this also liked..."

"If you bought this, you might also like..."

Typical applications

- Movies (Netflix)
- Songs (Spotify)
- **Books** (Goodreads)
- **E-commerce products** (Amazon)

Typical methods

- Collaborative filtering (CF)
- Content-based filtering (CB)

Challenges in the area of Financial Advice

- No explicit feedback
- Product nature might change over time
- A recommendation has a financial impact on the client

Recommender Systems for Financial Advice

Typically:

high net worth clients receive **tailored** investment advice

less affluent clients get **standardized** offerings

Recommender Systems for Financial Advice

Financial markets
Economies
Companies
Political events

Client life events Client goals Client preferences Client portfolios

Client Relationship Manager:

- manages between 50 and 200 clients
- manually processes information to provide customized advice

Recommender Systems for Financial Advice

Client Relationship Manager:

- focuses on his own clients
- has little knowledge of other relationship managers' clients

7

Recommender Systems for Financial Advice

Recommender System leverages crowd intelligence:

- finds similar clients across entire customer base
- cross-recommends products that are the most likely to be accepted
- supports relationship managers: improved quality of advice and saved time

8

Recommender Systems for Financial Advice

Recommender System:

- includes the less affluent client segments
- delivers recommendations to clients directly: access to personalized advice

Need for Explanations

Recommender Systems for Financial Advice

Why the need for explanations?

GDPR: right to explanations

Clients: explanations → more trust

CRMs: arguments to convince clients

How to get explanations?

Recommenders are built on similarities

Why are these clients similar?

Some systems have a ready answer, some don't

"People who bought this also liked..."

"If you bought this, you might also like..."

- (1) Recommender Systems for Financial Advice
- 2 Retail Banking Use Case
- 3 Private Banking Use Case
- 4 Summary and Outlook for the Future

Nature of the Use Case and Data Description

Retail Banking Use Case

Goal: personalized recommendations of retail banking products, such as accounts and credit cards

Relatively few offered products (tens to hundreds; current or savings accounts, credit cards, etc.)

Clients typically own few products

Clients rarely change products

Data from Nidwaldner Kantonalbank

- ✓ provided by the Nidwaldner Kantonalbank (NKB) and anonymised for the purpose of this presentation
- ✓ ~100 products
- √ ~3 products per client (on average)
- ✓ Product categories:
 - Current accounts
 - Savings accounts
 - Credit card accounts
 - Investment accounts
 - Mortgages and loans
 - etc.

Data Overview: Top 20 Most Popular Products

Retail Banking Use Case

product

Why Model Based CF Fails & Our Model Choice Retail Banking Use Case

RESULTS

 Model-based CF
 Popular Model

 Accuracy
 $8.96 \pm 0.18\%$ $20.43 \pm 0.23\%$

 Mean Reciprocal Rank
 $17.72 \pm 0.18\%$ $31.53 \pm 0.22\%$

"Popular" (non-personalised) model performs better than model-based CF

- clients consume **too few products** (3 on average)
- low variety of the most popular products

Memory-based demographic collaborative filtering

- + cold-start solved through user features
- + easily interpretable: explanations for recommendations
- requires collection of features
- need to store full matrix
- → useful for retail banking use case (limited history)

Memory Based Collaborative Filtering

Retail Banking Use Case

Step 1: Demographic segmentation

For each client, find a neighbourhood of k similar clients (**k-NN**) based on the **Gower** distance and features:

- gender
- · age group
- · wealth group
- e-banking usage
- 3rd pillar payments
- ...

Step 2: Product popularity

Within each client's neighbourhood:

- **determine the popularity of each product** how many clients in the neighbourhood consumed it
- **identify explanatory features and values** values of features most common in the neighbourhood (e.g. age 18-24)

Step 3: Personalized recommendation

For each client:

- sort the products the client has not yet consumed by popularity
- recommend the top 5 products
- bonus: explanations via shared features in a neighbourhood

Results Retail Banking Use Case

RESULTS	Model-Based CF	Popular Model	Memory-Based Demographic CF
Accuracy	8.96 ± 0.18%	$20.43 \pm 0.23\%$	45.11 ± 1.27%
Mean Reciprocal Rank	17.72 ± 0.18%	$31.53 \pm 0.22\%$	58.44 ± 1.01%

Memory based demographic CF wins against popular model and model-based CF

Explanations are naturally provided by the algorithm

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Retirement Savings and Youth Savings accounts

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Retirement Savings and Youth Savings accounts

Recommend a savings account up to 20 years

Qlik Sense User Interface

Retail Banking Use Case

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Retirement Savings and Youth Savings accounts

Recommend a savings account up to 20 years

Explanation: popular product in a youth neighborhood between 18 and 24 with single civil status

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Client ID Q	Rank Q						
	1	2	3	4	5		
12619	Current account companies	Capital account	Open custody account	Savings plus 2	Time deposit (long term)		

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Private and Savings accounts

Qlik Sense User Interface

Retail Banking Use Case

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Private and Savings accounts

Q Recommend a current account for companies

Qlik Sense User Interface

Retail Banking Use Case

Retail Banking: Personal Recommender

Table of customers and their recommended products, ordered by the number of similar users that have this product

Customer already owns Private and Savings accounts

♀ Recommend a current account for companies

Explanation: popular product in neighborhood with no age or gender info, and of type "companies"

- (1) Recommender Systems for Financial Advice
- 2 Retail Banking Use Case
- 3 Private Banking Use Case
- 4 Summary and Outlook for the Future

Nature of the Use Case and Data Description Private Banking Use Case

Goal: personalized recommendations of financial instruments, such as stocks and bonds

Many offered products (thousands; financial instruments such as stocks, bonds, derivative instruments, etc)

Clients typically own many products

Clients buy and sell investments - **substantial history** of user-product "ratings"

Subset of data from Nidwaldner Kantonalbank

- ✓ provided by the Nidwaldner Kantonalbank (NKB) and anonymised for the purpose of this presentation
- √ 1117 users, 1788 items
- √ ~18 products per person (on average)

Model Based Collaborative Filtering

Private Banking Use Case

Model-based collaborative filtering (CF)

- + no user or item features required
- + typically more accurate than other models
- difficult to interpret
- → useful for private banking use case (abundant history)

Challenges

missing data points

→ client didn't want the product? OR doesn't know about it?

implicit ratings

→ how to determine if the clients liked the products they bought?

explanations must be worked out separately

→ matrix-based CF is a black box, it doesn't give explanations along the way

Modeling approach

- 1. Ratings matrix factorization to discover latent features
- 2. Confidence weights fix confidence weights in one model
- **3. Boosting** confidence weights estimated from the ensemble model

Results

Private Banking Use Case

RESULTS

AUC

nDCG

aRHR

Model-based CF

 0.9077 ± 0.0003

 0.5737 ± 0.0057

 0.4597 ± 0.0072

Popular Model

0.8728

0.4287

0.2719

Model based CF wins against the popular model

But explanations remain a missing piece

Explanations for Model Based CF: Best Attempt Private Banking Use Case

						6	©
	0	1	0	1	1	0	0
	1	0	1	0	0	1	1
	0	1	0	Q	1	1	0
	0	0	0	1	1	1	0
	1	0	1	0	1	1	0
	1	0	0	1	0	1	0
	0	1	0	1	1	0	0
Σ		2			3	2	

The product that appears together with the recommended one for similar users most often is the **explanatory product**

Explanations for Model Based CF: Best Attempt Private Banking Use Case

Explaining matrix factorization CF

- + gives useful and reasonable explanations
- requires additional computational step
- tries to imitate algorithm logic

What would be better

A CF matrix-factorisation algorithm that provides explanations on the way

- can also work with missing ratings
- is as accurate as Model Based CF

Private Banking Use Case

OCuLaR: Co-Clustering Recommendation Algorithm

Originally applied on:

- IBM products
- Scientific articles
- Movielens
- Netflix

We applied it on the NKB **private banking data**

Reinhard Heckel, Michail Vlachos, Thomas Parnell, Celestine Duenner, "Scalable and interpretable product recommendations via overlapping co-clustering", 2017

OCuLaR: Probabilistic Explainable Recommender Private Banking Use Case

	©						©
	0	1	1	1	0	0	0
•	0	1	1	1	0	0	0
	1	1	1	1	0	0	0
	0	1	1	0	1	1	0
	0	0	0	1	1	1	1
•	0	0	0	1	1	1	0
	0	1	0	0	0	1	1

Goal: produce recommendation for client 4

OCuLaR: Probabilistic Explainable Recommender Private Banking Use Case

	0						©
	0	1	1	1	0	0	0
•	0	1	1	1	0	0	0
	1	1	1	1	0	0	0
	0	1	1	0	1	1	0
	0	0	0	1	1	1	1
	0	0	0	1	1	1	0
	0	1	0	0	0	1	1

Observation: blocks in the matrix (**co-clusters**) combine similar users and items

Private Banking Use Case

						©
0	1	1	1	0	0	0
0	1	1	1	0	0	0
1	1	1	1	0	0	0
0	1	1	Q	1	1	0
0	0	0	1	1	1	1
0	0	0	1	1	1	0
0	1	0	0	0	1	1

Recommendation: uncovering co-cluster membership, we can recommend other items from these co-clusters

OCuLaR: Probabilistic Explainable Recommender Private Banking Use Case

-					64	©
0	1	1	1	0	0	0
0	1	1	1	0	0	0
1	1	1	1	0	0	0
0	1	1	Q	1	1	0
0	0	0	1	1	1	1
0	0	0	1	1	1	0
0	1	0	0	0	1	1

Recommendation: **Item 4** is recommended to **Client 4** because:

Private Banking Use Case

©						©
0	1	1	1	0	0	0
0	1	1	1	0	0	0
1	1	1	1	0	0	0
0	1	1	0	1	1	0
0	0	0	1	1	1	1
0	0	0	1	1	1	0
0	1	0	0	0	1	1

Recommendation: **Item 4** is recommended to **Client 4** because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4

Private Banking Use Case

©					+ 0	©
0	1	1	1	0	0	0
0	1	1	1	0	0	0
1	1	1	1	0	0	0
0	1	1	0	1	1	0
0	0	0	1	1	1	1
0	0	0	1	1	1	0
0	1	0	0	0	1	1

Recommendation: **Item 4** is recommended to **Client 4** because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4

Client 4 has purchased Items 5-6: clients with similar purchase history (clients 5-6) also bought Item 4

Private Banking Use Case

						©
0	1	1	1	0	0	0
0	1	1	1	0	0	0
1	1	1	1	0	0	0
0	1	1	Ĝ	1	1	0
0	0	0	1	1	1	1
0	0	0	1	1	1	0
0	1	0	0	0	1	1

Recommendation: **Item 4** is recommended to **Client 4** because:

Client 4 has purchased Items 2-3: clients with similar purchase history (clients 1-3) also bought Item 4 Client 4 has purchased Items 5-6: clients with similar purchase history (clients 5-6) also bought Item 4

Private Banking Use Case

(n
	D
4	_
5	_
(J
3	Ξ

Differences

O CuLaR	State-of-art Matrix Factorization						
Can work with missing or implicit ratings							
Decompose the ratings matrix into compact representation							
Use the notion of latent features, applicable both to users and items							
Predicts probability of a purchase	Predicts ratings						
$P[r_{ui} = 1] = 1 - \exp(-\langle f_u, f_i \rangle)$	$r_{ui} = \langle f_u, f_i \rangle$						
Latent factors are confined to model co-clusters	Provides no interpretation of latent features						
Explanatory products are revealed automatically	Provides no explanation for recommendations						

Private Banking Use Case

Results

RESULTS

AUC

nDCG

aRHR

OCuLaR Model-based CF

 0.9305 ± 0.0022 0.9077 ± 0.0003

 0.5709 ± 0.0039 0.5737 ± 0.0057

 0.4932 ± 0.0039

Popular Model

0.8728

0.4287

0.2719

OCuLaR and Model based CF both win against the popular model

 0.4597 ± 0.0072

OCuLaR provides explanations automatically

- (1) Recommender Systems for Financial Advice
- 2 Retail Banking Use Case
- 3 Private Banking Use Case
- 4 Summary and Outlook for the Future

Summary and Outlook

Recommender Systems for Mass Customization of Financial Advice

Retail Banking: personalized recommendations of accounts, credit cards, mortgages, etc.

Few products per user, limited history of ratings

Memory-based Demographic Collaborative Filtering

• **explanations** come as a part of algorithm through user features

Private Banking: personalized recommendations of financial instruments

Many products, abundant history of ratings per user

Model-based Collaborative Filtering

• probabilistic co-clustership model provides **explanations** on the way

Ongoing projects

Working with two large Swiss banks on an advisory recommender system in private banking

- A/B testing
- Portfolio context
- Features changing in time
- Hybrid models

BRANDSCHENKESTRASSE 41 CH-8002 ZURICH SWITZERLAND

INFO@INCUBEGROUP.COM INCUBEGROUP.COM

Thank you!

Anna Nowakowska anna.nowakowska@incubegroup.com