
2.00 

Picture-Top 

Picture 

7.4 / 20.7 cm 

9.3^4 

Picture-Bottom 

JÜRGEN HAKALA | LEONTEQ SECURITIES AG  

  

MACHINE LEARNING APPLIED TO SLV CALIBRATION 
ADOPTING TECHNICS FROM MACHINE LEARNING 



PROBLEM DEFINITION 

06.09.2018 2 

  

MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 



HEADLINE 

LIGHT 

HEADLINE BOLD  

Subline 

                                                                                                                                                                                                                         

RASTER 

                 
   

                       
   

                       
   

                       
   

                       

2.20 

9.00 

Content-Top 

Content-

Bottom 

RASTER 

06.09.2018 3 

DEFINITION 

  

LEVERAGE FUNCTION CALIBRATION IN SLV MODEL MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• Given a stochastic local volatility process 

 

 

 

 

• As described in [GH] the calibration problem for the smile is to find a 

suitable leverage function that satisfies 

 

 

• Under the probability measure implied by the calibrated SLV 

process. Such problem is known as a McKean SDE. 
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SLV CALIBRATION MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• Following [GH] the problem can be solved in a discretized MC 

setting. We use Euler discretization for demonstration purposes: 

 

 

 

 

• Using the realization of MC up to t for N paths (or particles), we 

construct an approximation of the expectation in the calibration 

expression: 
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SLV CALIBRATION MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• In [GH] the problem 

 

 

 

• was tackled by using kernel regression 

 

 

 

 

• In [vSGO] the estimation was tackled by binning and alternatively by 

regressing on a set of polynomials. 
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SLV CALIBRATION MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• This problem is a well known topic in machine learning and the 

proposed solution by [GH] is the standard method applied to such a 

problem. 

• Nevertheless this method suffers from short-comings: 

• Bias in the areas close to the boundaries 

• Heavily depends on the choice of width parameter  

 

• Explore alternative solutions than polynomials [vSGO] to the non-

linear regression problem. Given independent samples of the 

realizations for the calibrated process          find a regression 

function for 
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SLV CALIBRATION MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• The core problem of estimating a function based on examples is a 

well studied one.  

• For examples without noise the problem can be reduced to 

interpolation. It is an ill-posed problem which can be made unique 

by defining a regularizer 

 

 

 

•  G is the solution to the Green’s function of the operator P’P.  

 

 

• And coefficients     are the solution of the normal equation.  
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MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• Function approximation and regression is a subset of machine 

learning problems and associated methods 

 

• In ML terms this is called supervised learning 

• Samples are presented to the algorithm to “learn” the underlying 

relationship. Usually the set of available samples is split into 

training, validation and test set.  

• The validation set is used to determine certain (meta)-parameters of 

the training method. 

• The (independent) test set is used to determine the performance of 

the algorithm 
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MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• So called non parametric methods do not assume a specific 

parametric form of the function to be approximated. Kernel 

regression is the most prominent of these methods. 

 

 

 

•  The kernel is semi-positive and is constrained to satisfy 
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Kernel Formula Range 

Gaussian unlimited 

Quartic 

Epanechnikov 

Sigmoid unlimited 
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• Local Linear Kernel regression is the second most prominent of 

these methods but requires slightly more computation. 

 

 

 

•  The LMS solution is found by summing 4 terms over all samples 

and  solving a 2x2 linear system.  
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MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• The Nadarayan-Watson based Kernel regression suffers from some 

shortcomings 

• All “examples” are used, there is no compression  

• At the boundaries there is a systematic bias 

• Alternatives: 

• Linear Kernel Regression – suffers much less from bias at the 

boundaries 

• Parametric – tricky to guess a good general parametric form  

• Largest issue is the choice of bandwidth 

• Silverman’s rule of thumb 

• Cross validation – in particular leave one out cross validation 
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SUPERVISED LEARNING – MODEL SELECTION 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

Largest issue is the choice of bandwidth 

• Silverman’s rule of thumb 

 

 

• Cross validation – esp. leave one out cross validation 

 

 

 

 

• The simple Silverman rule of thumb often leads to suboptimal 

results and cross validation is pretty expensive computationally. 
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SUPERVISED LEARNING – FUNCTION APPROXIMATION 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

There is a large variety of approaches to estimate functions from 

examples.  

• Radial Basis Functions and partition of unity RBF 

 

 

 

 

 

• Radial Basis Functions are quite close to Kernel regression as the 

functions used are of the same type. But it reduces the 

computational burden by taking a small number of kernels 

compared to the number of examples.  

• Training or determination is needed for the placement of centers and 

determination of the width as well as the weights. 
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SUPERVISED LEARNING – RBF - TRAINING 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

Training of weights for RBF 

• Least square problem 

 

 

• Leads to normal equation but with size C  

 

 

• With 

 

 

 

 

• Alternative would be stochastic gradient descent if the training data 
cannot be presented as a whole. 
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SUPERVISED LEARNING – RBF – TRAINING  

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• Often the matrix will be badly conditioned, hence a normalizer  

is a prudent choice 

 

 

 

 

 

 

• The regularizer can be found by cross validation.  
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SUPERVISED LEARNING – RBF - CENTERS 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

Determination of centers for RBF 

• Select the centers as a subset of the training examples (plus min 

and max) 

• Stochastic gradient descent 

• Resource allocation – gradually enlarge the number of basis 

functions to allocate more densely in areas which are difficult to fit 
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SUPERVISED LEARNING – RBF – WIDTH 
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Determination of width for RBF 

• Select the width as the average distance to the k-nearest neighbors 

• Select a global width (difficult to cross validate, split into a training 

and validation set – losing examples) 
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SUPERVISED LEARNING – RBF - PRUNING 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• To avoid overfitting and bad conditioning of the regression problem 

pruning can be used.  

• Kernels with centers too close to each other will be merge, pruning 

degrees of freedom from the approximator. 

 

• Pruning candidate criterion: 

 

• If neighboring centers are pruning candidates just prune one of them 
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SUPERVISED LEARNING – ALTERNATIVES? 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

Alternative could be multi-layer perceptron / Deep Networks  

• Training is much more demanding, multiple epochs of stochastic 

gradient based training.  

• Model selection is quite tricky – number of layers, number of units in 

each layer, weight sharing, activation functions,…. 

• Consider MLP type learning machine too demanding for this rather 

limited application.  
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COMPUTATIONAL EFFORT 

  

MACHINE LEARNING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• For standard Kernel Regression it is mainly due to sorting O(n 

log(n)) [GH], then the lookup can be optimized. Optimal 

determination of width (cross-validation) requires the evolution of all 

kernels at all points several times – very costly.  

• Local Linear requires sorting and inversion of a matrix. 

• RBF – PU-RBF 

• Training requires the solution of a small linear system 

• Sorted samples can be used to optimize the training (matrix and 

rhs are sums over samples weighted by kernel) 

• Width and pruning determination requires local computation of 

the order #kernels  
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Source: Leonteq AG, internal data, 27.03.2018 
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EUR/USD 6M 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

EXAMPLES MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

• Calibrate the Heston SV model on 6M maturity, mixing weight 90%. 

• Use the particle method with standard settings: 1024 particles, 

digital bound 0.1%, Kernel width determined by Silverman’s ‘Rule of 

Thumb’, Gaussian Kernels 
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EUR/USD 6M 
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Compare Kernel Estimators 
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EUR/USD 6M 
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Compare Kernel Estimators with Cross Validated Width 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

In
st

an
ta

n
e

o
u

s 
V

ar
ia

n
ce

 /
 E

st
im

at
e

d
 E

xp
e

ct
e

d
 V

ar
ia

n
ce

Spot

Comparing different cross-validated 
kernel estimators

forward

0.1% digital up

0.1% digital down

Current

Estimate Gaussian - width 0.0294

Estimate Quartic - width 0.0844

Estimate Epanechnikov - width 0.0335

 

Source: Leonteq AG, internal data, 27.03.2018 



HEADLINE 

LIGHT 

HEADLINE BOLD  

Subline 

                                                                                                                                                                                                                         

RASTER 

                 
   

                       
   

                       
   

                       
   

                       

2.20 

9.00 

Content-Top 

Content-

Bottom 

RASTER 

06.09.2018 32 

EUR/USD 6M 
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Compare Local Linear Kernel Estimators 
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Compare Local Linear Kernel Estimators with Cross Validated Width 
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Gaussian PU-RBF  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Source: Leonteq AG, internal data, 27.03.2018 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7

In
st

an
ta

n
e

o
u

s 
V

ar
ia

n
ce

 /
 V

ar
ia

n
ce

 E
st

im
at

e

Spot

Gaussian PU-RBF forward

0.1% digital up

0.1% digital down

Current

PU-RBF absolute global width

PU-RBF relative kNN width

PU-RBF pruned relative kNN width

PU-RBF absolute global width pruned

PU-RBF pruned relative kNN width with regularizer 0.2



HEADLINE 

LIGHT 

HEADLINE BOLD  

Subline 

                                                                                                                                                                                                                         

RASTER 

                 
   

                       
   

                       
   

                       
   

                       

2.20 

9.00 

Content-Top 

Content-

Bottom 

RASTER 

06.09.2018 35 

EUR/USD 5Y 
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Compare Kernel vs PU-RBF: Estimation of expected variance 
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Source: Leonteq AG, internal data, 27.03.2018 
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Compare Kernel vs PU-RBF: Estimation of expected variance 
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USD/JPY Local volatility 

 

 

 

 

 

 

 

 

 

 

 

  

Source: Leonteq AG, internal data, 27.03.2018 
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Compare Kernel vs PU-RBF: Estimation of expected variance 
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Local volatility: EUR/BRL Local Volatility 
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HEADLINE 

LIGHT 

HEADLINE BOLD  

Subline 

                                                                                                                                                                                                                         

RASTER 

                 
   

                       
   

                       
   

                       
   

                       

2.20 

9.00 

Content-Top 

Content-

Bottom 

RASTER 

06.09.2018 40 

EUR/BRL 3Y 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

EXAMPLES MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

Compare Kernel vs PU-RBF: Estimated variance 
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As the best results were obtained with kNN = 5, pruning               ,   

regularizer               and relative width 1.6 we will use those. 

  

• The calibration error is of the order of some basis points.  

• Compared to Kernel Regression the RMS error is smaller, often  

by a factor of 2 

 

 

 

 

 

 

 

 

 

 

 

Source: Leonteq AG, internal data, 27.03.2018 



HEADLINE 

LIGHT 

HEADLINE BOLD  

Subline 

                                                                                                                                                                                                                         

RASTER 

                 
   

                       
   

                       
   

                       
   

                       

2.20 

9.00 

Content-Top 

Content-

Bottom 

RASTER 

06.09.2018 42 

EUR/USD ONE-TOUCH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

EXAMPLES –EXOTICS PRICING MACHINE LEARNING APPLIED  

TO SLV CALIBRATION 

 

 

 

 

 

 

 

 

 

 

 

 

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

4.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

M
o

d
e

l -
TV

TV

EUR/USD OT 6M Upside
LV - BS

HES - BS

mix 66% - BS

-6.0%

-5.0%

-4.0%

-3.0%

-2.0%

-1.0%

0.0%

1.0%

2.0%

3.0%

0.0% 20.0% 40.0% 60.0% 80.0% 100.0%

M
o

d
e

l -
T

V

TV

EUR/USD OT 6M Downside

LV - BS

HES - BS

mix 66% - BS

 

Source: Leonteq AG, internal data, 27.03.2018 
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Machine Learning methods from the supervised learning field 

can be employed to approximate the conditional expected 

variance required in the SLV calibration. 

The advantage of PU-RBF is a robust smooth approximation that 

«automatically» adapts to the input density with a restricted set of 

basis functions.  

The training effort is relatively small, requiring the inversion of a 

rather small matrix. The required number of samples (particles) to 

train RBF networks is smaller than for the Kernel Regression case. 

No a-priori selection of a set of polynomials is necessary, as such the 

method is less susceptive to a prior bias. 
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We will be further accelerating the method by using better 

sorting algorithms for the samples, in particular as the samples 

are already pre sorted from the last step. 

Larger step-size for the time discretization would be desirable and will 

be a future topic in our refinements.  
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